博厚新材料通过三级提纯工艺控制镍基自熔合金粉末的氧含量:首先采用真空感应熔炼(真空度≤10⁻³Pa)减少金属氧化,其次在气雾化过程中通入高纯氩气(纯度 99.99%)作为雾化介质,通过高效除氧剂吸附残余氧,使氧含量稳定控制在 85-95ppm 之间。这种低氧含量确保了涂层在显微镜下观察无明显氧化物夹杂,结合强度测试(拉伸法)结果≥45MPa,较氧含量 150ppm 的粉末提升 20%。某航空发动机叶片修复项目使用该粉末后,涂层在热循环测试(20-800℃,100 次)中未出现剥落现象,证明了其优异的界面结合稳定性。博厚新材料镍基自熔合金粉末的球形度达 95% 以上,粒度分布均匀,适用于多种热喷涂工艺。抗氧化镍基自熔合金粉末材料分类
博厚新材料镍基自熔合金粉末在凝固过程中,通过控制冷却速率(≥10⁴℃/s)促进碳化物均匀析出,SEM 观察显示其碳化物尺寸主要分布在 2-5μm,呈弥散状分布于 γ-Ni 基体中,这种显微组织使涂层硬度达 HRC62-64(GB/T 230.1-2018 测试)。在磨粒磨损实验中(采用 120 目石英砂,入射角 60°),该涂层的磨损率为 2.3×10⁻⁶mm³/N・m,较常规镍基涂层降低 60%。其耐磨机制为:细小均匀的碳化物作为硬质点抵抗磨粒切削,而韧性的 Ni 基体提供支撑,形成 “硬质点 - 韧性基体” 协同抗磨体系,有效应对矿山、建材等行业的强磨损工况。PTA镍基自熔合金粉末检测在航空航天领域,博厚新材料镍基自熔合金粉末用于发动机叶片、燃烧室的高温防护涂层制备。
在医疗器械领域,博厚新材料镍基自熔合金粉末通过生物相容性优化与表面改性,为骨科植入物提供理想的涂层解决方案。该粉末采用 Ti-Ni 体系(Ni 50%),经表面羟基化处理后,通过磁控溅射形成纳米级涂层,厚度 5-10μm,表面接触角≤15°,促进骨细胞黏附与增殖。细胞毒性测试(MTT 法)显示,涂层提取物对 L929 细胞的存活率≥95%,而未处理 Ni 基涂层为 70%。动物实验(兔股骨植入)结果表明,8 周后涂层表面骨组织长入深度达 200μm,形成骨性结合,而纯钛植入物的骨结合率为其 60%。某骨科器械厂商使用该粉末涂层的髋关节假体,经 100 万次循环载荷测试(模拟 10 年使用),涂层未出现脱落,且摩擦磨损产生的 Ni 离子释放量≤0.1μg/L,远低于 ISO 10993-17 规定的限值(5μg/L)。
作为国家高新技术企业,博厚新材料在镍基自熔合金粉末领域实现多项国内技术突破。其研发的 “超细晶镍基自熔合金粉末制备技术”,通过控制雾化冷却速率(≥10⁵℃/s),使晶粒尺寸≤500nm,强度提升 40%,填补了国内超细晶涂层材料的空白;“低温烧结镍基自熔合金粉末” 技术,将烧结温度从 1100℃降至 950℃,解决了热敏性基体的涂层难题,获 2023 年湖南省技术发明奖。这些技术创新使我国在涂层材料领域摆脱对进口的依赖,例如某航天项目使用该公司粉末后,涂层成本从进口的 8000 元 /kg 降至 3000 元 /kg,且性能提升 15%,相关成果已在《稀有金属材料与工程》等期刊发表论文 12 篇,申请发明专利 8 项。博厚新材料针对不同工况优化配方,如 Inconel 625 衍生自熔合金粉末,耐蚀性较常规材料提升 3 倍。
博厚新材料研发的 BH-NiAlBSi 粉末通过调整 Al 含量(8-10%),使热膨胀系数(11.5×10⁻⁶/℃)与钛合金基体(10.5×10⁻⁶/℃)高度匹配,专门解决异种材料连接的热应力难题。粉末中的 Al 元素形成 Ni₃Al 金属间化合物,在降低热膨胀系数的同时,通过扩散焊接与钛合金基体形成过渡层(厚度 5-10μm),经 300℃热循环(20-300℃,1000 次)测试,涂层应变力≤50MPa,远低于材料的屈服强度。某航空企业采用该粉末作为钛合金与不锈钢的连接涂层,在发动机压气机部件中,经历 - 50℃至 200℃的温度交变,未出现界面开裂,且结合强度≥40MPa,满足航空级可靠性要求。粉末的热匹配设计还适用于钛合金与陶瓷、钛合金与铜等异种材料连接,拓宽了镍基涂层的应用边界。博厚新材料镍基自熔合金粉末松装密度为 2.5-3.0g/cm³,流动性≤20s/50g,可提升喷涂效率与成型质量。自熔性好镍基自熔合金粉末行业报价
用于食品加工设备的辊筒表面喷涂,博厚新材料镍基自熔合金粉末涂层符合 FDA 食品接触材料标准。抗氧化镍基自熔合金粉末材料分类
博厚新材料与顺丰冷运、京东物流等企业深度合作,构建粉末温控运输体系,确保存储环境湿度<20% RH,从源头杜绝粉末吸潮失效。运输环节采用定制化包装:内袋为三层铝箔真空袋(透湿量≤0.1g / 天),充入高纯氮气,外箱添加湿度指示卡(湿度>20% 时变色)与硅胶干燥剂(吸湿量≥自身重量 40%);运输车辆配备 GPS 温控系统(温度控制 25℃±5℃,湿度实时监测),一旦湿度超标自动启动除湿装置。某 3D 打印企业采购的钛基粉末经此运输后,存储 3 个月仍满足 SLM 设备对粉末流动性(≤20s/50g)的要求,而普通运输的粉末在相同存储条件下,湿度上升至 35% RH,流动性下降至 28s/50g,导致打印件致密度从 99% 降至 95%。该运输方案使粉末在东南亚湿热地区(如马来西亚)的交付合格率达 100%,解决了高湿度环境下的运输难题。抗氧化镍基自熔合金粉末材料分类