振动声学指纹在线监测基本参数
  • 品牌
  • 国洲电力
  • 型号
  • GZAF-1000T系列,GZAF-1000S系列
  • 厂家
  • 国洲电力
振动声学指纹在线监测企业商机

3.3.2.3基频信号能量比(E)100Hz基频分量时域信号能量占信号总能量的比值,计算公式:E=jmS1j2jmSj2,其中S1为100Hz基频分量的时域信号,Sj为原始信号,j为采样索引值。正常状态下,由于100Hz基频分量为声纹振动频谱图的主要成分,基频信号能量比应较大;存在故障时,谐波分量增加且峰值频率发生偏移,基频信号能量比变小。3.3.2.4互相关系数(r)正常状态与实测的声纹振动信号频谱图之间的相似度,计算公式:r=i=0N-1[Xi-X][Yi-Y]i=0N-1[Xi-X]2i=0N-1[Yi-Y]2,其中Xi和Yi分别为正常状态与实时测得声纹振动信号的频域分布,X和Y为对应信号的平均值,互相关系数范围为0~1。◆正常运行时,相关系数应接近于1。◆存在故障时,信号频率分布发生改变,互相关系数减小。杭州国洲电力科技有限公司振动声学指纹在线监测功能的高精度与可靠性。杭州开关柜振动声学指纹在线监测硬件使用

杭州开关柜振动声学指纹在线监测硬件使用,振动声学指纹在线监测

二、遵循标准(不限于下列标准)2.1GB/T4208外壳防护等级(IP代码)。2.2DL/T860变电站通信网络和系统。2.3DL/T1430变电设备在线监测系统技术导则。2.4DL/T1432.1变电设备在线监测装置检验规范第1部分:通用检验规范。2.5DL/T1498.1变电设备在线监测装置技术规范第1部分:通用技术规范。2.6DL/T1686六氟化硫高压断路器状态检修导则。2.7DL/T1687六氟化硫高压断路器状态评价导则。2.8DL/T1700隔离开关及接地开关状态检修导则。2.9Q/GDW383智能变电站技术导则。2.10Q/GDWZ414变电站智能化改造技术规范。2.11Q/GDW561输变电设备状态监测系统技术导则。2.12Q/GDW739输变电设备状态监测主站系统变电设备在线监测I1接口网络通信规范。2.13国家电网公司智能组合电器技术规范。国洲电力振动声学指纹在线监测销售方法杭州国洲电力科技有限公司振动声学指纹在线监测技术的客户反馈分析。.

杭州开关柜振动声学指纹在线监测硬件使用,振动声学指纹在线监测

1.2变压器/电抗器运行状态概述变压器/电抗器(下文皆用“变压器”简称)在电力系统中起到电压变换、电能分配等重要作用,其安全稳定运行对确保供电可靠性具有重要意义。有载分接开关(下文皆用OLTC简称)、绕组及铁芯是变压器的重要组成部分,三者故障率总和占变压器整体故障70%左右,而传统预防性试验有试验周期长、影响变压器正常运行、耗费人力物力等缺点。开展基于声学指纹的状态监测,可在在线状态下及时发现变压器OLTC、绕组及铁芯的潜在故障,并及时预警,从而延长变压器使用寿命,提高电网运行的可靠性。

七、GZAFV-01系统的售后技术培训与服务体系我公司拥有多名从事电力设备运行态势监测及诊断技术的*****和管理人员,均具有深厚的技术底蕴和丰富的现场电气作业经验;并拥有完善的售后服务管理体制。

现场作业组织架构图7.1技术培训关于在线监测型的GZAFV-01系统的现场电气作业,我公司为GZAFV-01系统组建现场作业项目部的电气作业工程师负责安装、调试、投运直至验收通过,并在作业现场对GZAFV-01系统的功能、指标和注意事项进行详细的技术培训。 杭州国洲电力科技有限公司振动声学指纹在线监测技术的政策支持背景。

杭州开关柜振动声学指纹在线监测硬件使用,振动声学指纹在线监测

4.2智慧化功能4.2.1具备边缘计算能力,就地采集并处理声纹振动信号及驱动电机电流信号,完成OLTC信号包络、ATF图谱等分析,完成绕组及铁芯振动信号频谱分析及参数计算,根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传分析结果。4.2.2具备实物ID管理功能,提供OLTC、绕组及铁芯运行状态信息链接入口,可扫码读取设备在线监测历史数据及趋势。通过扫码或RFID识别设备,读取设备ID信息,通过站内网络(4G/5G/WIFI)传输给云端服务器,向服务器请求该设备的详细信息,以及详细的运行状态,测试信息等。杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的智能化设计。特色服务振动声学指纹在线监测网上价格

杭州国洲电力科技有限公司振动声学指纹在线监测技术的行业应用前景。杭州开关柜振动声学指纹在线监测硬件使用

从振动和声学数据中提取有用的特征,以便建立设备的声学指纹,通常会用到以下信号处理技术:傅里叶变换(FFT):用于分析信号在频域中的特性,可以识别出设备运行时的固有频率和谐波成分。短时傅里叶变换(STFT):与FFT相比,STFT能够展示信号随时间变化的频率特性,适用于非平稳信号的分析。小波变换:具有良好的时频局部化特性,能够在多尺度上分析信号,适合捕捉瞬态事件和局部特征。包络检测:用于提取振动信号的振幅包络,可以用来表示信号的动态特性。频谱分析:通过计算信号的功率谱密度(PSD)或幅值谱,可以识别出信号的频率成分和能量分布。时频分析方法:如Wigner-Ville分布、Choi-Williams分布等,这些方法能够提供信号的时频表示,有助于分析复杂非线性和非平稳信号。模态分析:通过识别设备振动的模态特性,可以提取出与设备结构和损伤相关的特征。熵分析:如时域熵、频域熵或小波熵,这些方法可以量化信号的不确定性和复杂性,有助于识别设备状态的变化。统计分析:包括均值、方差、标准差等统计参数,可以描述信号的波动性和稳定性。高阶统计量:如偏度和峰度,它们可以提供信号分布形状的信息,有助于识别异常模式。杭州开关柜振动声学指纹在线监测硬件使用

与振动声学指纹在线监测相关的**
信息来源于互联网 本站不为信息真实性负责