变压器在生产、运输、安装过程中或在短路电流作用下,均会使绕组及铁芯压紧程度降低,绕组及铁芯故障分别约占变压器整体故障的36%和4%,对变压器抗短路电流冲击能力及安全稳定运行产生巨大威胁。绕组故障主要包括绝缘老化、受潮、匝间或绕组间短路、断路及机械损伤等,以上故障类型均可能导致绕组变形。传统的绕组变形监测方法有低压脉冲法(LVI)、频率响应分析法(FRA)和短路阻抗法(SCI),以上方法*适用于离线或停电监测。铁芯典型故障包括压铁松动、接地不良、夹件松动或损伤,常用监测方法包括绝缘电阻测试及接地电流监测。杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的兼容性分析。杭州GIS振动声学指纹在线监测重合度对比
3.3GZAFV-01系统的监测数据信号分析与处理3.3.1OLTC运行状态分析OLTC动作时,典型声纹振动和驱动电机电流的信号如下图3.4所示。通过分解时域内典型信号区间,可有效判断OLTC驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析OLTC的运行状态。然而,以上通过典型信号分析判断OLTC的运行状态需要丰富的实践经验,为方便监测人员快速完成诊断任务,需通过多种算法更直观、准确地判断OLTC状态。GZAFV-01系统结合基于小波变换及希尔伯特变换的包络分析、基于互相关系数的重合度分析、基于小波多分辨率分解的能量分布曲线分析、基于时频分布矩阵的信号比对等多种核心算法,实现OLTC***、有效、准确的状态诊断和早期隐患监测,降低OLTC运行的故障风险。质量振动声学指纹在线监测监测品牌排行杭州国洲电力科技有限公司振动声学指纹在线监测技术的市场需求分析。
敞开式断路器监测功能特性◆具备声纹振动、电流波形、行程曲线、压力变化等记录及展示,自动计算峰值电流、电流上升速率、动作时间、动作时长、行程、动/静触头分/合闸位置和次数等参数。◆IED/主机支持多通道监测数据的实时同步采集,通道数不小于8个(可定制)。◆具有比对分析功能:可将现测与标准/历史的监测数据进行横向/纵向比对分析。◆具有断电不丢失存储数据、复电自启动、自复位的功能,可连续实时监测、存储及导出1000次以上断路器动作数据。◆断路器每次动作后,IED/主机主动评估断路器运行状态,并自动上传分析结果。◆智能分析:依托于我公司建立的海量典型故障案例的数据库,包络分析后可快速实现历史信号重合度比对开展智能分析,更直观、快速地判断电力设备运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算,当实时采集信号包络曲线与正常状态包络曲线的互相关系数:接近1时,被测设备是接近正常状态。接近0时,被测设备是可能存在故障的异常状态。
GZAFV-01系统的IED/主机形态分便携式带电监测(分体机,如上图3.3、一体机)、长期固定在线监测式(标准1U的IED,如上图3.3)等机型。其中,便携式一体机结构轻巧,适用于带电巡检、故障诊断;标准监测单元与壁挂式监测单元适用于长期在线监测与故障诊断。6.12020年10月20日,我公司荣获国网公司设备部的邀请,委派技术智造中心总监王国明博士参与国网设备部组织的关于智慧变电站技术方案审查会,向与会的国网公司设备部、各省公司设备部及各省电科院的领导和**们做了《声纹振动监测技术在变电站主设备智慧型综合监测中的作用和实施方案》的汇报,获与会领导和**们的高度认可。如下图6.1所示。GZAFV-01型声纹振动监测系统(开关设备)智能评估和故障预警。
6.22020年10月22日,我公司的常务副总经理胡晗先生、技术智造中心总监王国明博士以技术顾问的身份,获邀参与国网冀北电力有限公司关于智慧物联体系建设专项劳动竞赛成果评审会,会上向国网冀北公司设备运行管理领域的各位领导和**们汇报了《电力设备声纹振动监测技术的发展态势和应用前景》,并会中作为厂家**参与技术评审,荣获与会领导和**们的高度认可。
6.3 2020年8月6日,我公司荣获南方电网生产技术部的邀请作为技术合作商的**,委派研发副总经理沈佳华先生参加南方电网的生产技术部、各分省公司、南网电科院和南网数研院等部门/单位的**们出席的《公司新技术交流会议》,向与会的各位**做了《变压器振动监测技术》的专题汇报。 杭州国洲电力科技有限公司振动声学指纹在线监测技术的实际应用价值。杭州GZAF-1000T系列振动声学指纹在线监测软件界面
杭州国洲电力科技有限公司振动声学指纹在线监测功能的主要特性解析。杭州GIS振动声学指纹在线监测重合度对比
3.3.1.3能量分布曲线基于小波变换的声纹振动信号多分辨率分析结果如下图3.8所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。比对正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。下图3.7为正常与异常状态的声纹振动信号能量分布曲线比对。
3.3.1.4时频能量分布矩阵(ATF图谱)获取声纹振动信号的时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态比对。下图3.9为正常状态下声纹振动信号时频能量矩阵。 杭州GIS振动声学指纹在线监测重合度对比