金属设备的腐蚀加速氯离子(Cl⁻)是引发金属腐蚀的主要促进因子之一。其离子半径0.181nm,可穿透不锈钢钝化膜缺陷处,与基体金属(如Fe²⁺)形成可溶性氯化物,导致:碳钢:Cl⁻>300mg/L时点蚀速率超1mm/年(较纯水环境快20倍)不锈钢:304不锈钢在Cl⁻>200mg/L+60℃时应力腐蚀开裂(SCC)风险激增铜合金:诱发脱锌腐蚀,黄铜管3年壁厚损失可达40%某滨海电厂实测数据显示,循环水Cl⁻从100mg/L升至500mg/L后,碳钢换热器更换频率由5年/台缩短至1.5年/台,单台设备更换成本超¥80万。零排放系统中氯离子易超饱和。江苏除氯除硬
"电解-吸附"耦合工艺:电解将Cl⁻转化为Cl₂(去除率80%)活性炭吸附残余Cl₂并催化分解炭床定期热再生(600℃)该组合使某石化废水Cl⁻从5000mg/L降至100mg/L,运行成本较纯电解法降40%。
五大现实挑战:高能耗:处理Cl⁻=2000mg/L时吨水电费¥12-18电极损耗:DSA阳极年腐蚀率3-5μm安全风险:Cl₂泄漏报警阈值0.5ppm结垢问题:Ca²⁺>200mg/L时极板结垢加速浓水处置:浓缩液Cl⁻>50g/L需蒸发结晶某电厂因未控制Ca²⁺(350mg/L),电解槽每月需酸洗,年维护费增加¥60万。 北京除氯设备膜蒸馏耐高氯,但通量低、成本高。
某电镀园区废水含Cl⁻ 6000mg/L(主要来自HCl酸洗),采用"铁碳微电解-混凝-蒸发结晶"组合工艺:微电解阶段Fe⁰+H⁺+Cl⁻→FeCl₂+H₂↑,Cl⁻去除率35%;投加PAC(200mg/L)后通过Al₁₃O₄(OH)₂₄⁷⁺络合吸附,总去除率提升至65%;之后MVR蒸发器将Cl⁻浓缩至120g/L结晶为NaCl副产品。系统总投资¥1200万,处理成本¥85/吨,较传统离子交换法降低40%。运行难点是Fe²⁺氧化生成的Fe(OH)₃会包裹铁碳填料,需每月高压水枪反冲洗。
含氯溶液中的氯离子对农作物的生长有着严重的危害。高浓度的氯离子会损害农作物的根系,影响根系对水分和养分的吸收,导致植株矮小、叶片发黄、生长缓慢,严重时甚至会导致农作物死亡。例如,一些靠近工业排放源的农田,由于灌溉水的含氯量过高,农作物的产量和品质都受到了极大的影响。所以,如果用于农业灌溉的水含氯量较高,必须进行除氯处理。
对于高浓度的含氯废水,可以采用循环除氯工艺。例如,先将含氯废水和氯离子吸附剂通入一级处理罐进行混合,然后将一级处理后的氯离子吸附剂和碳酸钠溶液通入一级回收罐进行混合煅烧,得到一级复原的氯离子吸附剂,再将其用于二级处理罐进一步处理废水。这种工艺操作相对简单,氯离子的去除率可以达到 97% 以上,而且能够实现氯离子 氯离子与阻垢剂竞争,降低效率。
源力循环水同步除氯除硬系统,采用前沿电化学技术,搭配自主研发的MOC高效电极与复合结构设计,以酸碱分离的方式同步去除循环水中的氯离子和钙镁离子,将循环水浓缩倍数提升至10倍以上,大幅减少排污量和补水量,取代药剂法和低效电化学除垢工艺。
同步除氯除硬:防腐、除硬、杀菌一体技术,告别药剂法及传统低效电化学法。运行成本低:运行能耗是传统阴极除垢的十分之一。除垢效率高:水体析出方式除垢,比传统阴极除垢更方便高效。 离子交换树脂易受污染,需定期再生。甘肃海水淡化除氯
氯离子穿透不锈钢钝化膜,引发点蚀。江苏除氯除硬
氯碱电解槽产生的尾气含Cl₂ 3-8%,传统采用两级碱洗(NaOH 15%):首级吸收率>99%,生成NaClO(pH>12),次级补充Na₂SO₃还原残余Cl₂。某企业改造为"碱洗-催化氧化"工艺,在CuO/γ-Al₂O₃催化剂(200℃)下将Cl₂转化为HCl回收,氯排放从50mg/m³降至1mg/m³以下。关键控制点是避免尾气中H₂浓度达易爆极限(4-75%),需安装在线红外分析仪。新型离子液体吸收剂(如[BMIM]PF₆)对Cl₂的亨利系数低至0.12kPa·m³/mol,吸收容量达传统碱液的3倍。江苏除氯除硬