粘结剂喷射(Binder Jetting)通过喷墨头选择性沉积粘结剂,逐层固化金属粉末,生坯经脱脂(去除90%以上有机物)和烧结后致密化。其打印速度是SLM的10倍,且无需支撑结构,适合批量生产小型零件(如齿轮、齿科冠桥)。Desktop Metal的“Studio System”使用420不锈钢粉,烧结后密度达97%,成本为激光熔融的1/5。但该技术对粉末粒径要求严苛(需<25μm),且烧结收缩率高达20%,需通过数字补偿算法预先调整模型尺寸。惠普(HP)推出的Metal Jet系统已用于生产数百万个不锈钢剃须刀片,良品率超99%。铝合金3D打印件经过热处理后,抗拉强度可提升30%以上,但易出现热裂纹缺陷。湖南因瓦合金粉末品牌
浙江高温合金粉末咨询金属粉末回收系统可将未熔融的3D打印余粉筛分后重复使用,降低成本损耗。
目前金属3D打印粉末缺乏全球统一标准,ASTM和ISO发布部分指南(如ASTM F3049-14针对钛粉)。不同厂商的粉末氧含量(钛粉要求<0.15%)、霍尔流速(不锈钢粉<25s/50g)等指标差异明显,导致跨平台兼容性问题。欧洲“AM Power”组织正推动粉末批次认证体系,要求供应商提供完整的生命周期数据(包括回收次数和热处理历史)。波音与GKN Aerospace联合制定的“BPS 7018”标准,规范了镍基合金粉的卫星粉含量(<0.3%),成为航空供应链的参考基准。
高密度钨合金粉末因其熔点高达3422℃和优异的辐射屏蔽性能,被用于核反应堆部件和航天器推进系统。通过电子束熔融(EBM)技术,可制造厚度0.2mm的复杂钨结构,相对密度达98%。但打印过程中易因热应力开裂,需采用梯度预热(800-1200℃)和层间退火工艺。新研究通过添加1% Re元素,将抗热震性能提升至1500℃急冷循环50次无裂纹。全球钨粉年产能约8万吨,但适用于3D打印的球形粉末(粒径20-50μm)占比不足5%,主要依赖等离子旋转电极雾化(PREP)技术生产。粉末冶金烧结过程中的液相形成机制对硬质合金的晶粒长大有决定性影响。
金属3D打印的粉末循环利用率超95%,但需解决性能退化问题。例如,316L不锈钢粉经10次回收后,碳含量从0.02%升至0.08%,需通过氢还原炉(1200℃/H₂)恢复成分。欧盟“AMEA”项目开发了粉末寿命预测模型:根据霍尔流速、氧含量和卫星粉比例计算剩余寿命,动态调整新旧粉混合比例(通常3:7)。瑞典Höganäs公司建成全球较早零废弃粉末工厂:废水中的金属微粒通过电渗析回收,废气中的纳米粉尘被陶瓷过滤器捕获(效率99.99%),每年减排CO₂ 5000吨。
粉末冶金铁基材料通过渗铜处理,可同时提升材料的强度与耐磨性能。湖南因瓦合金粉末品牌
AlSi10Mg铝合金粉末在汽车和航天领域都掀起了轻量化革新。其密度为2.68g/cm³,通过电子束熔融(EBM)技术成型的散热器、卫星支架等部件可减重30%-50%。研究发现,添加0.5%纳米Zr颗粒可细化晶粒至5μm以下,明著提升抗拉强度至450MPa。全球带领企业已推出低孔隙率(<0.2%)的改性铝合金粉末,配合原位热处理工艺使零件耐温性突破200℃。但需注意铝粉的高反应性需在惰性气体环境中处理,粉末回收率控制在80%以上才能保证经济性。