1.萌芽期(1930s-1950s)背景:20世纪初期,天然橡胶和金属是工业主要材料,但二战期间物资短缺催生了合成材料的研发需求。里程碑:1930s:德国科学家***合成聚酰胺(PA,尼龙)(杜邦公司1938年工业化),用于替代丝绸制造降落伞、轮胎等***物资。1940s:聚甲醛(POM)和聚碳酸酯(PC)的实验室合成,但尚未规模化生产。1950s:杜邦推出PTFE(聚四氟乙烯),因其耐腐蚀性应用于化工设备。ABS(丙烯腈-丁二烯-苯乙烯共聚物)问世,兼具强度与韧性,用于家电外壳。特点:材料以替代天然材料为主,性能初步满足机械强度需求,但加工技术不成熟。大冢化学主要提供改性工程塑料和特种聚合物,以满足汽车、电子等行业的高性能需求。厦门PPA工程塑料
3、ABS的工艺特点:(1)ABS的吸湿性较大和耐温性较差,在成型加工前必须进行充分干燥和预热,将水分含量控制在0.03%以下.(2)ABS树脂的熔融粘度对温度的敏感性较低(与其它无定型树脂不同).ABS的注射温度虽然比PS稍高,但不能像PS那样有较宽松的升温范围,不能用盲目升温的办法来降低其粘度,可用增加螺杆转速或提升注射压力/速度的办法来提高其流动性.一般加工温度在190~235℃为宜.(3)ABS的熔融粘度属中等,比PS、HIPS、AS均较高,流动性较差,需采用较高的注射压力啤贷.合肥胶水结合力工程塑料供应商工程塑料的耐腐蚀性使其成为化工设备和管道的优先选择材料。
蠕变变形:解决方案:交联改性(如辐射交联PTFE)或使用高结晶度塑料(如POM)。成本问题:解决方案:以塑代钢需综合计算全生命周期成本(如减重节省的燃油费)。五、未来发展方向高性能复合材料:碳纤维增强热塑性塑料(CFRTP)用于车身结构,如东丽TEPEX®。智能化材料:自修复工程塑料(如微胶囊化DCPD单体)用于汽车保险杠。可持续替代:生物基PA56(源自蓖麻油)商业化,碳排放比PA66减少40%。工程塑料在轻量化、耐腐蚀、复杂设计场景中已逐步替代钢材,但在超**度(>500MPa)、极端温度(>300℃)领域仍需突破。未来随着复合材料技术和回收体系的完善,替代比例将进一步提升。
填充型导电塑料:碳黑填充ABS、碳纳米管(CNT)增强PA、石墨烯改性PC。关键性能:表面电阻率可调(10³~10¹²Ω/sq),用于防静电、电磁屏蔽(EMI)。应用场景:电子包装(防静电托盘)、5G天线罩(EMI屏蔽)、柔性电路(可穿戴设备)。
导热/绝缘塑料材料体系:高导热填料:氮化硼(BN)、氧化铝(Al₂O₃)、石墨片填充PPS、PA6。绝缘导热塑料:BN/硅胶复合物(导热系数5~20W/m·K)。
关键性能:导热系数可达金属的1/10(传统塑料的10~50倍),同时保持绝缘性。 工程塑料的耐候耐候性使其在户外照明和交通设施中得到应用。
加入少量的CNF导致界面共价键引发的填料-基体应力转移,可以显著提高PA6的拉伸强度,同时由于裂纹扩展期间,CNF在基体中起了桥梁的作用,使得PA6的缺口冲击强度也有所提高。天津工业大学以适当脱胶处理的竹原纤维与PP纤维为原料,采用非织造工程的加工方法制作了混合纤维预制件,通过热压成型工艺制备了竹原纤维增强PP热塑性复合材料。竹原纤维与PP纤维的质量配比为50/50,模压温度、时间及压力分别为190℃、30min及30MPa时,制得的复合材料力学性能比较好,其纵、横向拉伸强度分别为96.6MPa和82.3MPa;纵、横向弯曲强度分别为400.7MPa和367.3MPa。电动化部件:阻燃PBT用于电池模块。南昌尺寸稳定工程塑料价格查询
工程塑料的耐疲劳性能使其在循环负载下仍能保持性能。厦门PPA工程塑料
3.高性能化与环保期(1990s-2010s)背景:电子设备微型化、汽车减排要求推动材料升级,环保法规(如RoHS)限制有害物质使用。里程碑:1990s:生物基工程塑料萌芽,如杜邦的Sorona(部分源自玉米)。聚萘二甲酸乙二醇酯(PEN)推出,比PET更耐热,用于饮料瓶。2000s:纳米复合材料兴起(如纳米粘土增强PA),提升机械强度和阻隔性。聚乳酸(***)等可降解塑料进入工程应用,但性能局限明显。2010s:高温尼龙(PA6T、PA9T)用于汽车涡轮增压管路。回收工程塑料技术(如化学解聚PC)逐步成熟。特点:材料向高性能(高耐热、低蠕变)和可持续(生物基、可回收)双向发展,改性技术(共混、填充)成为主流。厦门PPA工程塑料