视觉系统靶标可重复使用与移动布设,满足阶段性监测需求。公路结构监测不仅涵盖长期运行状态的连续监控,也包括阶段性、临时性专项检测任务,如桥梁加固前后对比监测、边坡施工期稳定性检测等。星地遥感视觉系统使用的靶标为大强度塑料材质或金属材质,具备防水、防晒、抗风化等特性,支持螺栓固定、强磁吸附或免工具粘贴方式安装,拆卸后可重复使用。该特点有效降低了短期项目的布设成本,同时提升了施工灵活性与资产利用率。在某市一座主梁裂缝治理专项中,施工单位借助可移动靶标对10个点位进行为期3周的变形监测,项目完成后靶标回收,用于后续隧道拱顶检测任务,显著提高资源使用效率。该能力适应广东各类公路结构“动态治理+精细运维”的管理模式,是监测系统轻量化与灵活化的重要体现。山地光伏场区边坡监测,多角度巡检预警滑坡保护设备安全。水库机器视觉位移监测仪案例
爆破后边坡变形快速评估:露天矿每次爆破作业后,震动可能削弱边坡稳固性,如果贸然让人员和设备进入采场,可能遭遇二次塌滑风险。传统做法通常是爆破后目视检查边坡情况,但肉眼难以发现细小裂缝或轻微位移变化。借助无人机视觉监测,矿山可在爆破后快速评估边坡变形情况。待硝烟散去,无人机即可靠近爆区边缘飞行,高清摄像头拍摄当前的坡面影像,与爆破前的基准图像自动比对。通过三维模型差异分析,系统能够检测到爆破引起的边坡表面毫米级形变和岩块松动迹象。如果监测发现局部区域出现异常位移,说明该处边坡可能尚不稳定。矿山管理人员据此可暂停作业、危岩或支护加固,确认安全后再恢复生产。这一快速无接触评估手段大幅提升了爆破后复工的安全性和效率。工程安全机器视觉位移监测仪解决大型光伏电站沉降监测,三维观测保障支架阵列平稳运行。
灾后建筑结构快速评估:地震、exposure等灾害过后,大量建筑结构状况不明,快速评估哪些建筑出现危险位移对救援和恢复至关重要。传统由工程师逐栋肉眼检查既耗时又存在漏判,且强余震环境下人工检查有危险。使用无人机进行建筑结构位移快评可以极大提高效率和安全性。救援人员能够携带轻便的无人机深入灾区,对重点建筑进行外观和姿态扫描。无人机绕建筑飞行几周,获取墙体垂直度、倾斜角度和相对位移等数据,并通过三维建模与震前设计参数对比,快速判断建筑是否发生明显的倾斜、扭曲或局部坍塌。系统内置的视觉算法能够在复杂背景中识别建筑边线的偏移量,将结果实时上传至指挥中心。凭借毫米级精度,哪怕建筑整体只倾斜了一两度也能被准确检测出来 。这些客观数据帮助现场指挥判定哪些建筑可能失去承载能力需要立即清空,哪些建筑仍然基本稳定可以用作避难场所。相比传统方法,无人机快评能在黄金救援时间内完成对大片区域建筑的甄别筛查,为救灾决策赢得宝贵时间。
系统支持结构荷载响应分析,实现桥梁运行状态实时感知。广东省技术指南提出,应对关键桥梁开展运行状态识别,特别是结构受交通荷载作用下的响应监测。星地遥感结合GNSS动态监测和高频视觉采样技术,构建桥梁“荷载响应分析”模块,支持对主梁挠度变化、支座反应、墩柱响应的实时观测。XDYG-18北斗接收机具备10Hz采样频率,能实时捕捉车辆通过造成的微小沉降;XDYG-EC视觉系统通过多靶标点位同步采样,可准确识别梁体受压或振动下的微动趋势。在惠州某市政大桥项目中,该系统通过与交通流量信息结合,建立桥梁荷载-响应数据库,识别出部分时段超载车辆对结构的动态冲击,协助管理单位调整限载措施,优化车道组织。该应用模式推动桥梁从静态安全监测向“运行行为监测”升级,提升道路桥梁运营管理水平。石窟崖壁裂隙位移监测,预警岩体脱落风险。
在传统水利工程管理体系中,视频监控与结构监测系统通常为单独运行,缺乏协同。星地遥感在视觉监测系统中融合视频图像、结构位移、监测频率与传感器状态信息,实现数据与图像的同步采集与回传,统一提升现场“可视化”与“可量化”程度。通过云平台,管理人员不仅能查看每个观测点的位移曲线,还能实时查看摄像头拍摄画面,便于确认异常变形是否与现场施工、降雨、滑坡等宏观因素相关联。在边坡与大坝管理应用中,该系统极大增强了远程运维能力,管理者可远程进行“图像确认+数据复核”操作,降低因单一数据异常引发误判的风险。在广东某水库的日常运维中,该系统成功识别一次因外部作业造成的假性位移误警,实现了“异常发现—图像溯源—快速判断”的高效处置流程。地铁车站开挖变形监测,多角度观测控制深基坑施工风险。视觉位移机器视觉位移监测仪合作伙伴价格
矿山运输道路边坡监测,及时处置塌方隐患确保运输畅通。水库机器视觉位移监测仪案例
平台嵌入AI智能分析引擎,提升异常识别与趋势预测能力。传统水利监测主要依赖人工设阈值告警,对突发性或非线性异常难以快速识别。星地遥感在其智慧水利平台中引入AI智能分析引擎,利用机器学习算法对海量历史监测数据进行建模训练,具备趋势识别、突变检测和潜在风险评分等功能。系统可自动识别非线性位移变化、周期性异常震荡、突发滑移等情况,并输出预警等级与解释建议。以边坡监测为例,平台能基于10天前的微小变化趋势,预测未来72小时的滑移风险概率,辅助决策人员提前干预。在深圳某大坝项目中,该AI模型准确识别出一次由地下水位骤升引发的库岸局部沉降趋势,实现了提前72小时的预警通知,为风险控制赢得了充足时间。AI分析的引入,使得水利监测系统从“报警机制”向“预测体系”转型,迈入智能治理新阶段。水库机器视觉位移监测仪案例
视觉系统靶标可重复使用与移动布设,满足阶段性监测需求。公路结构监测不仅涵盖长期运行状态的连续监控,也包括阶段性、临时性专项检测任务,如桥梁加固前后对比监测、边坡施工期稳定性检测等。星地遥感视觉系统使用的靶标为大强度塑料材质或金属材质,具备防水、防晒、抗风化等特性,支持螺栓固定、强磁吸附或免工具粘贴方式安装,拆卸后可重复使用。该特点有效降低了短期项目的布设成本,同时提升了施工灵活性与资产利用率。在某市一座主梁裂缝治理专项中,施工单位借助可移动靶标对10个点位进行为期3周的变形监测,项目完成后靶标回收,用于后续隧道拱顶检测任务,显著提高资源使用效率。该能力适应广东各类公路结构“动态治理+精细运维”...