热导率K在声子传热中的关系式为:K=1/3cvλ;上式c为陶瓷体本身的热容,v为声子的平均运动速度,λ为声子的平均自由程。材料本身的热容(c)接近常数,氮化铝的热容大是氮化铝的热导率高的原因之一,声子速度(v)与晶体密度和弹性力学性质有关,也可视为常数,所以,声子的传播距离(平均自由程),是影响很终宏观上氮化铝陶瓷的热导率表现的关键。所以我们通过氮化铝内部声子的热传导机理可知,要想热导率高,就要使声子的传播更远(自由程大),也即减少传播的阻力,这种阻力一般来自于声子扩散过程中的各种散射。烧结后的陶瓷内部通常会有各种晶体缺陷、杂质、气孔以及引入的第二相,这些因素的作用使声子发生散射,也就影响了很终的热导率。通过不断研究证实,在众多影响AlN陶瓷热导率因素中,AlN陶瓷的显微结构、氧杂质含量尤为突出。氮化铝的商品化程度并不高,这也是影响氮化铝陶瓷进一步发展的关键因素。杭州多孔氮化铝商家
提高氮化铝陶瓷热导率的途径:选择合适的烧结工艺,致密度对氮化铝陶瓷的热导率有重要影响,致密度较低的氮化铝陶瓷很难有较高的热导率,因此必须选择合适的烧结工艺实现氮化铝陶瓷的致密化。常压烧结:常压烧结的烧结温度通常为1600℃至2000℃,当添加了Y2O3烧结助剂后,氮化铝粉会产生液相烧结,烧结温度一般在1700℃至1900℃,特别是1800℃很常用,保温时间为2h。烧结温度还要受到氮化铝粉粒度、添加剂含量及种类等的影响。热压温度相对能低一些,一般是在1500℃至1700℃,保温时间为0.5h,施加的压力为20MPa左右。在1500℃至1800℃范围内,提高氮化铝烧结温度通常会明显提高氮化铝烧结体的导热率和致密度,特别是在常压烧结时,这种影响更为明显。杭州多孔氮化铝商家氮化铝硬度高,超过传统氧化铝,是新型的耐磨陶瓷材料。
AlN陶瓷金属化的方法主要有:化学镀金属化法是在没有外电流通过的情况下,利用还原剂将溶液中的金属离子还原在呈催化活性的物体表面上,在物体表面形成金属镀层。化学镀法金属化的结合强度很大程度上依赖于基体表面的粗糙度,在一定范围内,基体表面的粗糙度越大,结合强度越高;另一方面,化学镀金属化法的附着性不佳,且金属图形的制备仍需图形化工艺实现。激光金属化法利用激光的热效应使AlN表面发生热分解,直接生成金属导电层。激光照射到AlN陶瓷表面后,陶瓷表面吸收激光的能量,表面温度上升。当AlN表面温度达到热分解温度时,AlN表面就会发生热分解,析出金属铝。具有成本低、效率高、设备维护简单等优点,在生产实践中得到了较广的应用。但是,激光金属化也同样面临着许多问题,如:金属化层表面生成团聚物并呈多孔性,金属化层的附着性差和金属厚度不均等。
氮化铝陶瓷是一种综合性能优良的新型陶瓷材料,具有优良的热传导性,可靠的电绝缘性,低的介电常数和介电损耗,无毒以及与硅相匹配的热膨胀系数等一系列优良特性,被认为是新一代高集成度半导体基片和电子器件的理想封装材料。另外,氮化铝陶瓷可用作熔炼有色金属和半导体材料砷化镓的坩埚、蒸发舟、热电偶的保护管、高温绝缘件,同时可作为耐高温耐腐蚀结构陶瓷、透明氮化铝陶瓷制品,因而成为一种具有较广应用前景的无机材料。陶瓷的透明度,一般指能让一定的电磁频率范围内的电磁波通过,如红外频谱区域中的电磁波若能穿透陶瓷片,则该陶瓷片为红外透明陶瓷。纯净的AlN陶瓷为无色透明晶体,具有优异的光学性能,可以用作制造电子光学器件装备的高温红外窗口和整流罩的耐热涂层。因此,氮化铝陶瓷在方面具有很好的应用。制约氮化铝商品化的主要因素就是价格问题。
致密度不高的材料热导率也不会高。为了获得高致密度的氮化铝陶瓷,一般采取的方法有:使用超细粉、改善烧结方式、引入烧结助剂等方法。因此,氮化铝粉体粒径的大小会直接影响到氮化铝陶瓷烧结的致密度。超细氮化铝粉体由于其高的比表面积,会在烧结的过程中增加烧结的推动力,加速烧结的过程。此外,粉体的尺寸变小也就意味着物质的扩散距离变短,高温下有利于液相物质的生成,极大地加强了流动传质作用。由于氮化铝自扩散系数小,烧结非常困难。只有使用纯度高的超细粉,才可以在烧结的过程中尽可能地减少气孔的出现,保持高致密度。因此,据中国粉体网编辑的了解,工业上一般要求超细氮化铝粉体的D50(即颗粒累积分布为50%的粒径)尺寸尽可能地保持在1~1.5μm左右且粒度均匀。氮化铝是一种很有前途的高功率集成电路基片和包装材料。杭州多孔氮化铝商家
提高氮化铝陶瓷热导率的途径:加入适当的烧结助剂,可促进氮化铝陶瓷致密化。杭州多孔氮化铝商家
提高氮化铝陶瓷热导率的途径:加入适当的烧结助剂,引入添加剂主要有两方面的作用:促进氮化铝陶瓷致密化。氮化铝是共价化合物,具有熔点高、自扩散系数小的特点,一般难以烧结致密,使用添加剂可以在较低温度产生液相,润湿晶粒,从而达到致密化。净化晶格。氮化铝低氧有很强的亲和力,晶格中经常固溶了氧,产生铝空位,降低了声子的平均自由程,热导率也因此降低。合适的添加剂可以有效与晶格中氧反应生成第二相,净化晶格,提高热导率。大量的研究表明,稀土金属氧化物和氟化物、碱土金属氧化物和氟化物等均可以作为助烧剂提高氮化铝的热导率。但添加剂的量应适当,过多会增加杂质含量,从而影响热导率;过少又起不到烧结助剂的作用。复合助剂比单一的添加剂能更有效的提高热导率,同时还能降低烧结温度。杭州多孔氮化铝商家