WPI 心电监测设备:助力心血管疾病研究WPI 心电监测设备在模式动物心血管疾病研究中扮演着关键角色,为深入了解心血管疾病发病机制提供了重要的数据支持。该设备具备长时间稳定采集小动物心电信号的能力。在研究小鼠等小动物的心血管疾病时,科研人员将心电监测设备的电极连接到小鼠体表特定位置,设备便可持续、精细地记录小鼠的心电信号。通过分析这些心电信号的特征,如心率变异性、ST 段变化、心律失常等,科研人员能够洞察小鼠心血管系统的功能状态。例如,在研究遗传性心血管疾病小鼠模型时,心电监测设备可记录疾病发展过程中心电信号的动态变化,帮助科研人员明确疾病的发病时间节点、进展规律以及药物干预后的改善情况,为开发针对心血管疾病的治疗方法和药物提供有力的实验依据,推动心血管疾病研究取得新突破 。肌力测试仪测量动物肌肉收缩的力量大小。浙江稻飞虱模式动物
WPI 小动物微电极抛光仪:神经研究的利器在小动物神经科学研究中,WPI 小动物微电极抛光仪发挥着举足轻重的作用。其专业的设计,旨在为科研人员制备高质量的微电极,满足单细胞电生理记录等高分辨率研究需求。制备微电极时,该仪器能精细控制抛光过程。通过精细调节各项参数,如抛光力度、时间及方式等,可使微电极前列达到理想的光滑度与尖锐度。在小鼠脑科学研究里,研究人员利用经此仪器抛光后的微电极,配合脑立体定位仪,能够精确插入小鼠大脑特定区域的单个神经元附近。这样一来,便能高分辨率记录神经元在接受刺激或处于不同生理状态下产生的电信号变化,助力揭示神经信号传递的奥秘,为深入了解大脑功能及神经系统疾病发病机制提供关键技术支持,为神经科学研究迈向新高度奠定基础 。内蒙古果蝇模式动物仪器厂家灭菌锅对动物实验器材进行高温高压灭菌。
WPI 细胞培养加热控制台:呵护细胞生长环境在模式动物的细胞生物学研究中,维持细胞的良好生长状态至关重要,WPI 细胞培养加热控制台为此发挥了关键作用。它精心营造稳定且适宜的温度环境,为细胞培养工作保驾护航。细胞对温度极为敏感,微小的温度波动都可能影响其正常生理状态和生长活性。WPI 细胞培养加热控制台具备精细的温度调控能力,能够将温度稳定在细胞生长所需的比较好范围,偏差极小。以小鼠胚胎干细胞培养为例,在此加热控制台提供的稳定环境下,胚胎干细胞能够保持良好的未分化状态,正常进行生长、分裂等活动。科研人员借助这一设备,可更好地开展细胞分化机制、基因表达调控等相关研究。在肿瘤细胞研究中,也能利用该控制台模拟体内温度环境,观察肿瘤细胞在不同条件下的生长特性,为*****策略的制定提供重要参考,***助力细胞生物学领域的科研工作。
WPI 数据采集系统:汇聚科研数据洪流在模式动物研究中,WPI 数据采集系统犹如一位高效的 “数据管家”,负责汇聚来自各种实验设备的大量数据,为科研人员深入分析实验结果提供坚实基础。该系统具备强大的数据兼容性,能够与 WPI 公司的多通道生理记录仪、细胞电生理记录设备、成像系统等多种仪器无缝对接。在一项综合性的小鼠生理实验中,多通道生理记录仪记录小鼠的心率、血压、呼吸等生理数据,细胞电生理记录设备捕捉神经元的电信号变化,成像系统拍摄小鼠组织***的形态结构图像。WPI 数据采集系统将这些来自不同设备、不同类型的数据整合在一起,按照时间顺序和实验参数进行有序存储。科研人员通过系统的数据分析界面,可便捷地调用、查看和分析这些数据,挖掘数据背后的关联和规律,为研究小鼠生理功能、疾病机制等提供***、准确的数据支持,助力科研工作迈向更高水平 。脑立体定位仪辅助定位动物脑部区域。
行为分析系统:行为分析系统是研究模式动物行为学的**工具。该系统通常由多个高清摄像头、传感器和专业的行为分析软件组成。在实验过程中,摄像头实时捕捉模式动物,如大鼠、小鼠等在特定实验环境中的活动,传感器则收集动物的运动速度、距离、方向等数据,然后通过行为分析软件对这些数据进行处理和分析。例如,在Morris水迷宫实验中,通过行为分析系统可以精确记录小鼠寻找水下平台的时间、路径以及游泳速度等参数,以此评估小鼠的空间学习和记忆能力。这种系统还可用于研究动物的焦虑、抑郁等行为表现,通过观察动物在开放场实验中的活动范围、探索行为等指标,判断其情绪状态。行为分析系统的应用,使模式动物行为研究更加客观、准确和量化,避免了人为观察的主观性和误差。同时,它能够长时间连续记录动物行为,获取丰富的实验数据,但在实验设计时,需要充分考虑环境因素对动物行为的影响,确保实验结果的可靠性。光纤记录系统记录动物神经活动荧光信号。湖北褐飞虱模式动物
动物成像仪实现动物体内生物过程可视化。浙江稻飞虱模式动物
WPI多通道记录仪评估肥胖小鼠呼吸功能在肥胖相关呼吸疾病研究中,WPI多通道生理记录仪实现了呼吸功能的多参数监测。通过植入式压力传感器,可同步获取肥胖小鼠的潮气量、呼吸频率及气道阻力等指标。与正常小鼠相比,高脂饮食组潮气量降低18%,而气道阻力升高25%,且出现明显的间歇性低氧事件。结合膈肌肌电记录,研究人员发现肥胖小鼠的膈肌放电频率在低氧时增加30%,但放电幅度下降20%,提示膈肌疲劳。当给予瘦素干预后,记录仪显示潮气量改善22%,且膈肌电活动恢复正常。这种呼吸力学与肌电活动的同步监测,为肥胖低通气综合征的病理机制研究和药物评估提供了综合解决方案。浙江稻飞虱模式动物