振动基本参数
  • 品牌
  • 国洲电力
  • 型号
  • GZAF-1000T系列,GZAF-1000S系列,
振动企业商机

AFV 信号分析法基于对 OLTC 振动特性的研究来判断其状态。OLTC 内部触头在频繁的分 / 合切换过程中,由于机械应力、化学腐蚀以及触头材料的消耗,不可避免地会出现凹凸不平和变形的情况。这种变化直接导致触头压力、接触电阻和开矩参数发生改变,进而使得 OLTC 的振动特征产生明显变化。比如,触头磨损严重时,振动信号的高频成分会增加,信号的稳定性变差。通过 AFV 传感器持续监测这些振动特征的改变,我们就可以准确判断 OLTC 是否处于故障状态,及时采取相应措施,保障电力系统的稳定运行。杭州国洲电力科技有限公司振动声学指纹在线监测技术的市场推广策略。变压器振动技术指导

变压器振动技术指导,振动

AFV信号分析法是一种基于振动信号监测的OLTC(有载分接开关)状态诊断技术。其**原理是利用AFV(Acoustic Frequency Vibration)传感器采集变压器箱壁上的振动信号,通过分析信号的时域、频域特征,判断OLTC的运行状态。OLTC在切换过程中,内部机构(如触头、弹簧、传动装置)的运动会产生机械冲击和摩擦振动,这些振动信号通过静触头或变压器油传递至箱壁。由于不同故障(如触头磨损、弹簧老化、电弧放电)会导致振动特征的变化,因此AFV信号分析法能够有效识别OLTC的早期故障,为预防性维护提供依据。振动声纹监测公司杭州国洲电力科技有限公司振动声学指纹在线监测技术的行业应用背景。

变压器振动技术指导,振动

弹簧弹性下降的AFV信号特征识别。弹簧弹性下降的AFV信号特征识别弹簧机构是OLTC切换动力的关键部件,其弹性下降会导致切换时间延长或动作不到位。AFV信号分析法通过分析振动信号的时频特性,可以识别弹簧老化问题。例如,正常状态下,OLTC切换时的振动信号具有清晰的周期性冲击特征;而弹簧弹性不足时,冲击信号的间隔时间会延长,且幅值降低。此外,弹簧故障还可能引发二次振动(如机构回弹),这些特征均可通过AFV信号的小波变换或包络分析进行提取。

AFV 信号分析法的关键在于通过对 OLTC 振动信号的监测和分析,获取其状态数据和工作模式。OLTC 切换时,内部主要机构部件的运动撞击和摩擦产生的脉冲冲击力,通过变压器油传递到变压器箱壁,在箱壁上形成振动响应。这些振动响应包含了 OLTC 内部多种激励现象的信息,如触头的分 / 合状态、弹簧的弹性等。AFV 传感器采集这些振动信号,并运用专业的分析方法提取其中的特征参数。当 OLTC 出现触头磨损故障时,特征参数中的某些指标,如振动信号的峰峰值、有效值等会发生明显变化。通过对这些变化的判断,我们可以准确诊断出 OLTC 的故障状态,为设备的运行维护提供科学依据。杭州国洲电力科技有限公司振动声学指纹在线监测技术的成功案例分享。

变压器振动技术指导,振动

OLTC的振动信号主要通过两种路径传播:一是通过静触头的机械连接直接传递至变压器外壳;二是通过变压器油的声波传导。这两种路径的信号特征有所不同,静触头传递的信号通常包含高频成分(如触头撞击),而油中传播的信号则以中低频为主(如机械共振)。AFV信号分析法需结合多传感器布置,以捕捉不同频段的振动信息,从而提高故障诊断的准确性。例如,触头接触不良会导致高频振动能量增加,而弹簧弹性下降则可能引起低频振动幅值的变化。杭州国洲电力科技有限公司振动声学指纹在线监测技术的科研支持背景。GZAF-1000T系列电抗器振动振动供应

杭州国洲电力科技有限公司振动声学指纹在线监测技术的标准化实施路径。变压器振动技术指导

能量分布曲线

基于小波变换的声纹振动信号多分辨率分析结果如下图3.8所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。比对正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。下图3.7为正常与异常状态的声纹振动信号能量分布曲线比对。

时频能量分布矩阵(ATF图谱)

获取声纹振动信号的时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态比对。下图3.9为正常状态下声纹振动信号时频能量矩阵。 变压器振动技术指导

与振动相关的**
信息来源于互联网 本站不为信息真实性负责