蒸发器:是实现制冷的关键部件,冷媒水在其中蒸发吸收热量,使被冷却介质温度降低。蒸发器内的低压环境是保证冷媒水能够在较低温度下蒸发的关键,这就依赖于整个机组维持高真空状态。吸收器:负责吸收蒸发器产生的冷剂蒸汽,使蒸发器内保持低压,促进冷媒水持续蒸发。溴化锂浓溶液在吸收冷剂蒸汽的过程中,溶液浓度降低变为稀溶液,同时释放吸收热。吸收器内的传质过程对机组制冷性能至关重要,而不凝结性气体的存在会严重干扰这一过程。普星制冷以质量求生存,以信誉促发展。威海吸收式溴化锂机组维保
蒸发器的制冷效果是衡量溴化锂机组性能的关键指标,以下因素对蒸发器的制冷效果有着影响:首先是蒸发器内的真空度,真空度越高,冷剂水的沸点越低,蒸发越容易进行,制冷效果越好。当真空度不足时,冷剂水的沸点升高,蒸发速度减慢,制冷量下降。因此,维持蒸发器内的高真空度是保证蒸发器制冷效果的首要条件。其次是冷剂水的喷淋量和分布均匀性,在喷淋式蒸发器中,冷剂水的喷淋量和分布均匀性直接影响着蒸发面积和传热效率。喷淋量不足或分布不均匀,会导致部分蒸发管簇得不到充分利用,降低整体蒸发效率。泰安热水型溴化锂机组维保普星制冷诚信做人,务实为民。
单效溴化锂机组能利用单一热源(如 0.1-0.25MPa 的低压蒸汽、80-120℃的热水或燃油燃气等)进行加热,热源在发生器中一次性释放热量后便被排出系统,能量利用率较低,其热力系数(COP 值)一般在 0.6-0.7 左右。双效溴化锂机组则采用 “双效” 加热模式,可利用较高温度的热源(如 0.25-0.8MPa 的中高压蒸汽、120-200℃的高温热水或高温烟气等)。在高压发生器中,高温热源首先对稀溶液进行加热,产生高温冷剂蒸汽;该冷剂蒸汽进入低压发生器作为加热热源,对低压发生器中的稀溶液进行二次加热,自身则冷凝为水。这种两次利用热源能量的方式,使双效机组的热力系数提升至 1.0-1.2,相比单效机组节能效果。
吸收器在溴化锂机组中承担着吸收冷剂蒸汽的重要任务,其结构设计旨在优化溴化锂溶液对冷剂蒸汽的吸收过程,提高吸收效率。吸收器通常采用喷淋式结构,主要由管簇、喷淋装置和液池等部分组成。管簇内通有冷却水,用于带走吸收过程中释放的吸收热;喷淋装置将溴化锂浓溶液均匀地喷淋在管簇上,形成液膜,以增大溶液与冷剂蒸汽的接触面积,强化吸收传质过程。具体来说,从蒸发器蒸发出来的冷剂蒸汽进入吸收器,与喷淋而下的溴化锂浓溶液充分接触。由于浓溶液具有较高的溴化锂浓度和较低的水蒸气分压力,而冷剂蒸汽具有较高的水蒸气分压力,因此冷剂蒸汽会迅速被浓溶液吸收,使蒸发器内的压力保持在很低的水平(通常为几毫米汞柱),确保冷媒水能够在低温下蒸发制冷。随着冷剂蒸汽的不断吸收,浓溶液的浓度逐渐降低,变为稀溶液,落入吸收器的液池中,然后由溶液泵输送至发生器进行加热浓缩,完成溶液的循环。普星制冷需要客户来支持。
短期停机前,需对机组进行系统性性能检测,重点记录发生器出口溶液浓度、蒸发器冷媒水温度、冷凝器冷凝压力等关键参数,为重启提供数据参考。在停机前 2 小时,逐步降低热源输入,使机组负荷降至 30%-50%,同时调节溶液循环量与冷却水流量,维持机组内压力与温度的平稳过渡。关闭热源阀门后,继续运行溶液泵和冷却水泵 30 分钟,确保发生器内残留热量充分释放,避免溶液局部过热结晶。长期停机前除完成短期停机的检测项目外,还需对溴化锂溶液进行化验。当溶液浓度低于 50% 或 pH 值小于 9 时,需添加溴化锂晶体或氢氧化锂进行调节,防止酸性环境对金属部件的腐蚀。对于直燃型机组,需彻底清理燃烧器内的积碳与油污,检查点火电极间距并涂抹抗氧化剂。停机前 4 小时开始执行溶液再生程序,通过加热使溶液浓度提升至 55%-58%,并将浓缩后的溶液全部转移至吸收器,避免发生器内残留稀溶液在停机期间结晶。普星制冷以人才和技术为基础,创造优异产品和服务。滨州溴化锂制冷机改造
普星制冷重视合同,确保质量,严守承诺。威海吸收式溴化锂机组维保
直燃型机组的发生器通常采用高压发生器和低压发生器的双发生器结构,燃烧器直接对高压发生器中的溶液进行加热,产生高温冷剂蒸汽。这种发生器需要具备良好的燃烧性能和耐高温、耐腐蚀性能,以适应燃油或燃气燃烧的高温环境。而蒸汽型机组的发生器则主要是通过蒸汽与溶液的热交换来加热溶液溴化锂机组作为以热能驱动的制冷设备,在工业生产、商业建筑等领域应用。当机组因季节性更替、设备检修或生产调整等原因需要停机时,合理的维护措施是确保机组再次启动时性能稳定的关键。根据停机时间的长短,可分为短期停机(2周内)和长期停机(2周以上),两者在维护需求上存在差异。短期停机维护侧重保持机组运行状态的连贯性,而长期停机则需从防腐蚀、防结晶、真空度维持等多方面进行系统性保护。深入理解这些差异。 威海吸收式溴化锂机组维保