微流控芯片在石英和玻璃的加工中,常常利用不同化学方法对其表面改性,然后可以使用光刻和蚀刻技术将微通道等微结构加工在上面。玻璃材料的加工步骤与硅材料加工稍有差异,主要步骤有:1)在玻璃基片表面镀一层 Cr,再用甩胶机均匀的覆盖一层光刻胶;2)利用光刻掩模遮挡,用紫外光照射,光刻胶发生化学反应;3)用显影法去掉已曝光的光胶,用化学腐蚀的方法在铬层上腐蚀出与掩模上平面二维图形一致的图案;4)用适当的刻蚀剂在基片上刻蚀通道;5)刻蚀结束后,除去光刻胶,打孔后和玻璃盖片键合。标准光刻和湿法刻蚀需要昂贵的仪器和超净的工作环境,无法实现快速批量生产。微孔阵列技术实现液滴阵列化,用于数字 PCR、高通量药物筛选等场景。浙江微流控芯片优点
美国Caliper Life Sciences公司Andrea Chow博士认为,微流控技术的成功取决于技术上的跨界联合、技术和应用,这三个因素是相关的。他说:“为形成联合,我们尝试了所有可能达到一定复杂性水平的应用。从长远且严密的角度来对其进行改进,我们发现了很多无需经过复杂的集成却有较高使用价值的应用,如机械阀和微电动机械系统(MEMS)。改进的微流控技术,一般用于蛋白或基因电泳,常常可取代聚丙烯酰胺凝胶电泳。进一步开发的微流控芯片可用于酶和细胞的检测,在开发新prescription面很有用。陕西微流控芯片技术深硅刻蚀实现 500μm 以上深度微流道,适用于高压流体控制与微反应器。
L-Series包括严格的机械平台,集成了显微镜技术、微定位和计量学等方法。可应用于芯片电场的微型电位计(Microport)也作为其开发的副产品。L-Series致力于真正的解决微流控设备开发者所遇到的难题:构造芯片系统和提供实用程序,Sartor说:“若是将衬质和芯片粘合在一起,需要经过长期的多次测试,”设计者若想改变流体通道,必须从头开始。L-Series检测组使内联测试和假设分析实验变得更简单,测试一个新设计只要交换芯片即可。当前,L-Series设备只能在手动模式下运行,一次一个芯片,但是Cascade 正在考虑开发可平行操作多个芯片的设备。
高标准PDMS微流控芯片产线的批量生产能力:依托自研单分子系列PDMS芯片产线,公司建立了从材料制备到成品质检的全流程标准化体系。PDMS芯片生产包括硅模制备、预聚体浇筑、固化切割、表面改性及键合封装五大工序,其中关键环节如硅模精度控制(±1μm)、表面亲疏水修饰(接触角误差<5°)均通过自动化设备实现,确保批量产品的一致性。产线配备光学显微镜、接触角测量仪及压力泄漏测试仪,对芯片流道尺寸、密封性能及表面特性进行100%全检,良品率稳定在98%以上。典型产品包括单分子免疫检测芯片、数字ELISA芯片及细胞共培养芯片,单批次产能可达10,000片以上。公司还开发了PDMS与硬质卡壳的复合封装技术,解决了软质芯片的机械强度不足问题,适用于自动化检测设备的集成应用,为生物制药与体外诊断行业提供了可靠的批量供应保障。支持 0.5-5μm 微米级尺度微流控芯片加工,满足单分子检测等高精需求。
安捷伦在微流控技术平台上的三个主要产品是Agilent 2100、 Bioanalyzer/5100、 Automated Lab-on-a-Chip (后有斯坦福大学Stephen Quake研究小组开发的微流体控制因素大规模地综合应用和瑞士Spinx Technologies开发的激光控制阀门。澳大利亚墨尔本蒙纳士大学的研究者正在开发可在微通道内吸取、混合和浓缩分析样品的等离子体偏振方法。等离子体不接触工作流体便可产生“推力”,具有维持流体稳定流动,对电解质溶液不敏感也不受其污染的优点。瑞士苏黎士联邦工业大学的David Juncker认为,流体的驱动没有必要采用这类高新技术,利用简单的毛细管效应就可以驱动流体通过微通道。微流控芯片的前景是什么?贵州微流控芯片技术规范
微流控芯片产业的深度分析。浙江微流控芯片优点
微流控芯片小批量生产的成本优化策略:针对研发阶段与中小批量订单需求,公司构建了“快速原型-工艺优化-小批量试产”的全流程成本控制体系。在快速原型阶段,采用3D打印硅模(成本较传统光刻降低60%)与手工键合,7个工作日内交付首版样品;工艺优化阶段通过DOE(实验设计)筛选比较好加工参数,将材料利用率提升至90%以上;小批量生产(100-10,000片)时,利用共享模具与标准化封装流程,较传统批量工艺降低40%的单芯片成本。例如,某科研团队定制的500片细胞分选芯片,通过该策略将单价控制在大规模量产的70%,同时保持±1%的流道尺寸精度。公司还提供阶梯式定价与工艺路线建议,帮助客户在保证性能的前提下实现成本比较好化,尤其适合初创企业与高校科研项目的器件开发需求。浙江微流控芯片优点