光学发射光谱(OES)和激光诱导击穿光谱(LIBS)OES:用于分析生物样品中的元素组成。LIBS:通过激光烧蚀生物组织,检测其元素成分。6. 非线性光谱Andor 光谱仪支持多种非线性光谱技术,用于研究生物分子的动态过程,例如:二次谐波生成(SHG):用于检测生物组织中的非线性光学特性。泵浦探测光谱:用于研究生物分子的超快动力学。7. 生物医学诊断Andor 光谱仪在临床诊断中的应用包括:体内和体外*细胞筛选:通过拉曼光谱检测*细胞的化学特征。皮肤**诊断:结合显微光谱技术,用于显微手术中的实时诊断。非侵入式监测:用于监测患者生物参数,如血液成分分析。Andor Zyla sCMOS 相机是一款高性能的科学级相机,专为需要高灵敏度、高帧率和高分辨率成像的应用而设计。新疆超快光谱学相机Andor测量系统
Andor Neo sCMOS 相机是一款高性能的科学级相机,专为满足生命科学、物理科学和天文学等领域的高灵敏度、高速成像需求而设计。以下是其技术规格、性能特点和应用领域的详细介绍:技术规格传感器类型:sCMOS像素数量:550万像素(2560 x 2160)像素尺寸:6.5 µm量子效率:峰值 60%全帧速率:比较高可达 100 fps(全帧)读取噪声:低至 1 e⁻冷却技术:真空制冷至 -40℃动态范围:高达 30,000:1快门模式:支持滚动和全局(快照)快门接口:Camera Link 或 USB 3.0山东EMCCD相机Andor厂商Andor提供 >99.7% 的线性度,确保在信号强度表示局部浓度的应用中(如离子通量、FRET 等)数据的准确性。
Andor 提供了一系列高性能的紫外光谱相机,适用于从紫外(UV)到近红外(NIR)和短波红外(SWIR)的光谱分析。这些相机广泛应用于拉曼光谱、吸收/透射/反射光谱、光发射光谱(OES)、激光诱导击穿光谱(LIBS)、显微光谱和非线性光谱学等领域。技术规格Andor 的紫外光谱相机系列包括 iDus CCD、Newton CCD、Newton EMCCD 和 iDus InGaAs 等型号,具有以下特点:高灵敏度与低噪声:峰值量子效率(QE)高达 95%(可见光和近红外),部分型号在紫外波段也有出色表现。读取噪声低至 <1 电子(EM 增益模式),适合极低光通量的应用。暗电流极低,例如在 -100°C 制冷下,暗电流低至 0.00007 电子/像素/秒。多种芯片规格:提供多种像素阵列,如 1024 x 128、1024 x 256、2048 x 512 等,满足不同视场和分辨率需求。像素尺寸从 6.5 µm 到 26 µm 不等,适合高分辨率和高灵敏度成像。
量子光学iStar像增强探测器能够捕捉量子态的快速变化和单光子事件,适用于量子纠缠、量子态测量和非线性光学研究。等离子体诊断用于等离子体的快速瞬态成像,能够捕捉等离子体的动态变化。激光诱导荧光(LIF)和激光诱导击穿光谱(LIBS)提供高时间分辨率和高灵敏度,适合激光诱导荧光和击穿光谱的快速成像。时间分辨荧光用于荧光寿命测量和时间分辨荧光成像,能够区分不同荧光寿命的分子。流体力学与燃烧分析纳秒级时间分辨成像能够捕捉燃烧过程中的快速化学反应和流动现象。非线性光学适用于研究非线性光学现象,如二次谐波生成(SHG)和三次谐波生成(THG)。Andor 的高速高灵敏 sCMOS 相机系列是其科学成像产品中的重要组成部分。
Andor iDus CCD 和 iDus InGaAs 是两款针对不同光谱范围优化的高性能光谱相机,以下是它们的主要区别:1. 光谱范围iDus CCD:光谱响应范围:200-1000 nm(紫外到近红外)。适用于低光通量下的紫外、可见光和近红外光谱分析。iDus InGaAs:光谱响应范围:1.7 µm 型号为 0.6-1.7 µm,2.2 µm 型号为 0.8-2.2 µm。专为近红外和短波红外光谱应用设计。量子效率(QE)iDus CCD:峰值量子效率高达 95%(可见光和近红外)。iDus InGaAs:1.7 µm 型号的峰值量子效率为 85%。2.2 µm 型号的峰值量子效率为 70%。Zyla提供高达 82% 的 QE 和 100 fps 的帧率,具有 420 万到 550 万像素的分辨率。山东EMCCD相机Andor厂商
iKon 系列采用独特的热电冷却技术,制冷温度可达 -100°C,降低暗电流,适合长时间曝光。新疆超快光谱学相机Andor测量系统
探测器Andor 提供多种高性能探测器,适用于拉曼光谱的不同需求:iDus CCD:适用于低光通量下的拉曼光谱,提供高灵敏度和低噪声。iDus InGaAs:专为近红外拉曼光谱设计,覆盖 0.6-2.2 µm 波段。EMCCD:提供单光子灵敏度,适合极低光通量下的快速拉曼成像。sCMOS:支持高帧率和高分辨率成像,适合动态拉曼实验。拉曼实验中的具体应用自发拉曼:用于常规拉曼光谱分析,提供分子结构和化学组成的详细信息。表面增强拉曼光谱(SERS):通过增强拉曼信号,检测低浓度生物分子。针尖增强拉曼光谱(TERS):实现纳米尺度的化学成像,适用于细胞和组织的高分辨率分析。显微拉曼:结合显微镜,用于细胞、组织和纳米材料的微观分析。非线性拉曼技术(如 CARS):用于高灵敏度的拉曼成像,适用于复杂生物样品。新疆超快光谱学相机Andor测量系统