随着技术的发展,双光子显微镜的性能得到不断地优化,结合它的特点,大致可以分成深和活两个方面的提升。要想让激发激光进入更深的层面,大致可从两个方面入手,装置优化与标本改造。关于装置优化,我们可以把激光束变得更细,使能量更加集中,就能让激光穿透更深。关于标本,其中影响光传播的主要是物质吸收和散射,解决这个问题,我们需要对样本进行透明化处理。一种方法是运用某种物质将标本浸泡,使其中的物质(主要是脂质)被破坏或溶解。另一种方法是运用电泳将脂质电解,进而让标本“透明度”提高。成像平台倒置双光子显微镜启用显微镜自带调焦设备。investigator双光子显微镜厂家有哪些
1990年初,当WinfriedDenk刚从康奈尔大学博士毕业准备前往瑞士读博后时,他看了一本关于激光扫描显微镜的书,从中了解到非线性光学效应——强光和物质的相互作用。当时,Denk有同事研究生物样品中的钙离子但苦于没有强大的紫外激光器和光学元件,于是他就想到如果使用双光子吸收就能够绕开紫外,换言之,与其通过一个紫外光子激发标记的钙离子,通过两个双倍波长的可见光光子也能激发相同的荧光。有了想法后马上实验。借了一套染料飞秒激光器,Denk联合他的导师WattWebb及其博士生JamesStrickler只用六个小时就完成了实验搭建,采集数据则用了两到三天,于是一篇里程碑式的文章就此诞生了。国内bruker双光子显微镜光刺激双光子显微镜可以进行厚的组织样品拍摄。
从双光子到三光子:科学家正在从双光子转向三光子显微镜。1996年,ChrisXu在康奈尔大学(Denk同导师实验室)读博期间发明了三光子显微镜,如果双光子吸收可行,那么三光子看起来也是自然的发展方向。三光子成像使用更长的波长,大约在1.3和1.7微米,其成像深度也比双光子更深,目前记录约为2.2毫米,人类大脑皮层厚约4毫米。相比双光子显微镜,三光子还要求以较低重频使用更强和更短的激光脉冲,而传统的钛宝石激光器难以达到这些要求,但是对于掺镱光纤飞秒光参量放大器则非常容易,比如我们的Y-Fi光参量放大器(OPA)。
基因编码的荧光探针可用于在突触和细胞分辨率下监测体内神经元信号,这是揭示动物神经活动复杂机制的关键。双光子显微镜(2PM)可以对钙离子传感器和谷氨酸传感器进行亚细胞分辨率的成像,从而测量不透明脑深部的活动。成像膜的电压变化可以直接反映神经元的活动,但神经元活动的速度对于常规的2PM来说太快了。目前,电压成像主要由宽视场显微镜实现,但其空间分辨率较差,且只能在浅深度成像。因此,为了以高空间分辨率成像不透明脑中膜电压的变化,需要将成像速率提高2PM。面向模块输出端的子脉冲序列可视为从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成空间分离和时间延迟的聚焦阵列。然后,该模块被集成到一个带有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是重复频率为1MHz的920nm激光器。FACED模块可以产生80个脉冲焦点,脉冲时间间隔为2ns。这些焦点是虚拟源的图像。虚光源越远,物镜处的光束尺寸越大,焦点越小。光束可以沿Y轴比沿X轴更好地填充物镜,从而在X轴上产生0.82m和0.35m的横向分辨率。双光子显微镜在各领域研究中已有许多成功实例。
第二代微型化双光子荧光显微镜FHIRM-TPM2.0,其成像视野是该团队于2017年发布的代微型化显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像,并且实现了针对同一批神经元长达一个月的追踪记录。在一批“早鸟项目”中,该系统已被多个研究组应用于不同的模式动物和行为范式,如小鼠的社交新颖性识别、斑胸草雀受调控后大脑特定神经元变化、新型神经递质乙酰胆碱探针的传导适应性分析以及猕猴三脑区成像等多项研究。双光子显微镜的探测器,该怎么选用?荧光激光双光子显微镜代理商
双光子显微镜还可以对一些具有特性的染料细胞进行实验,还有一些短波长可以利用双光子特性进行特定实验。investigator双光子显微镜厂家有哪些
其实电子显微镜相比光学显微镜的重要优势或意义不在于放大倍数,而在于超高的分辨率。这两者是不同的。一般来说,观察时,除了放大物体外,还需要将其与其他相邻物体区分开来。如果两个相邻粒子的图像在光学显微镜下,即使放大很大程度,也可能看到两个相交的亮点(艾里斑),没有明显的边界(更不用说细节了),说明分辨率不够。没有分辨率谈放大是没有意义的。光学显微镜的分辨率极限是阿贝极限,大约是光波波长的一半。通常称之为光学显微镜的放大极限,但准确的说应该叫分辨率极限。原因是光的衍射,根本原因是光的波粒二象性。电子衍射实验证明了电子的波动性,所以在电子显微镜中用电子代替光是可能的。电子显微镜也有很多种,被摄体像REM。也有根据衍射规律观察的电子显微镜,如低能电子衍射(LEED)和透射电子显微镜(TEM)。两者主要用于观察晶体,根据晶体的周期特性在倒易空间产生衍射像,借助埃尔沃德球或傅里叶变换将其变换到实空间,即可得到真实的晶体表面像。investigator双光子显微镜厂家有哪些