光谱辐射计波长准确度的确定,使用标准光源校准:最常见的方法是使用已知波长发射线的标准光源来校准光谱仪。例如,汞灯、氖灯和氩灯等都具有特征发射谱线,这些谱线的波长是经过精确测量的。以汞灯为例,它在 253.65nm、365.01nm、404.66nm、435.83nm 和 546.07nm 等位置有明显的发射谱线。将汞灯作为标准光源,让光谱仪对其进行测量,然后比较测量得到的波长与已知标准波长之间的差异,差值越小,波长准确度越高。对于一些高精度的光谱仪,还会使用激光作为标准光源。例如,氦 - 氖激光器发射的波长为 632.8nm,其波长精度极高。通过将光谱仪对激光波长的测量值与 632.8nm 进行对比,可以精确评估光谱仪的波长准确度。光谱仪的光路系统需保持清洁以确保性能。宁波快速光谱仪专业设备
光谱辐射计在WELL标准的应用:
表面色彩评估:室内空间的表面颜色和材质会影响光的反射和吸收,进而影响整体的照明效果和视觉感受。光谱辐射计可以测量不同表面材料在不同光照条件下的反射光谱,分析其色彩质量和对光的反射特性。这有助于选择合适的装修材料和色彩搭配,以实现良好的照明效果和视觉体验,满足 WELL 标准中对于表面设计与色彩质量的要求。光源显色性检测:显色性是衡量光源对物体颜色还原能力的重要指标,对于营造舒适的视觉环境至关重要。光谱辐射计可以准确测量光源的显色指数,判断其是否能够真实地呈现物体的颜色。在 WELL 标准的应用中,光谱辐射计可以帮助筛选出显色性良好的光源,确保室内空间的色彩质量,为人们提供准确的视觉信息。 六安光谱仪市场价高精度快速光谱辐射计(实验室级)。
光谱辐射计能够准确测量不同波长范围内的辐射能量分布。通过对光源的光谱进行详细分析,可以了解光源发出的光在各个波长上的强度。这对于研究不同类型的光源,如太阳、白炽灯、LED 灯、激光器等非常关键。例如,在太阳能领域,光谱辐射计可以测量太阳光谱,帮助确定太阳能电池的比较好响应波长范围,以提高太阳能的转换效率。对于照明行业,了解光源的光谱分布可以评估其颜色特性、显色指数等参数,为照明设计提供依据。可以确定光源的峰值波长,即辐射能量**强的波长。这对于特定应用中选择合适的光源非常重要。例如,在荧光分析中,需要选择与荧光物质激发波长匹配的光源,以获得比较好的荧光效果。同时,光谱辐射计还能测量光谱的带宽,即辐射能量主要集中的波长范围。带宽的大小影响着光源的颜色纯度和应用效果。
近日,CIE新发布了一项技术报告《LightingforOlderPeopleandPeoplewithVisualImpairmentinBuildings》(CIE-227),分析了照明环境对视觉功能(如视敏度、对比敏感度、视野和颜色视觉)的影响,就办公室、公共场所及老年人和低视力人群住宅等室内环境给出了一些针对老年人与低视力人群的照明设计方法。当年龄超过45岁,人的眼内光散射逐渐增加,空间对比敏感度和视网膜照度逐渐减弱,暗适应下降,色觉变弱,人的视力会逐渐减弱。据世界卫生组织(WHO)统计,2017年全球有超过2.85亿人视力受损,且随着全球人口老龄化问题日益严重(如图1所示),社会劳动力也逐渐趋向老龄化,针对老年人和低视力人群的照明设计不容忽视。图1各国家老化人口(65岁以上)百分比及未来预计老化人口数量在以往的报告中,CIE123-1997讲述了照明环境对视觉功能(如视敏度、对比敏感度、视野和颜色视觉)的影响,提出了一些针对低视力人群的照明设计建议;ANSI/IESRP-28-07就电梯、走廊、卧室和浴室等特定应用场所,提出了针对老年人的整体照明设计方案;CIE196:2011分析了不同年龄段的对比敏感度(CSF)计算模型,为照明设计师和工程师提供了针对老年人和有视力障碍人群的设计方案。光谱仪在半导体制造中用于检测材料纯度。
积分球光谱测试系统是测量光源和材料的光谱特性的重要设备之一,其测量准确度要求取决于具体的应用和测试标准。在照明领域,积分球光谱测试系统常用来测量光源的光通量、色温、光效等参数。一般来说,测量准确度应符合相关的测试标准,如GB/T28135-2023等,要求测量精度在±1%以内,以保证测量结果的可靠性。在材料测量领域,积分球光谱测试系统常用来测量材料的透射率和反射率等参数。对于这些参数的测量,一般要求测量准确度在±2%以内,以保证测量结果的可靠性。总之,积分球光谱测试系统的测量准确度要求取决于具体的应用和测试标准,需要按照相关标准进行校准和检验,以保证测量结果的可靠性和准确性。光谱仪的波长范围覆盖紫外到红外区域。宁波教育照明检测光谱仪定制价格
光谱仪可以快速分析液体样品中的杂质含量。宁波快速光谱仪专业设备
光谱系统可以用于蓝光危害检测。蓝光危害检测的原理是利用光谱测量系统将光源辐射的复合光分离成不同波长的单色光,再通过检测器测定这些单色光的强度,从而得到光源的光谱分布情况。蓝光危害检测的步骤如下:将待测光源放置在积分球上。通过光学系统将光源辐射的复合光分离成不同波长的单色光。通过检测器测定这些单色光的强度,从而得到光源的光谱分布情况。蓝光危害检测的测量参数包括视网膜蓝光危害(300nm-700nm)、视网膜热危害(380-800nm)、弱视觉刺激视网膜热危害(780nm-800nm)、色坐标(x、y、u、v、u’、v’)波长、色温(CCT)、亮度(cd/m2)、显色指数(Ra、Ravg)、色容差(SDCM)、色纯度(Purity)、色彩饱和度(Rg)、色彩逼真度(Rf)、色质指数(CQS)、明暗视觉比(S/P)、透射比、闪烁指数、闪烁百分比、调制深度、频闪风险等级等1。蓝光危害检测的目的是为了计算蓝光危害量值,判断其是否符合标准要求。例如,对于某一光源,可以通过光谱测量计算其蓝光危害效能系数KB,V,公式如下:KB,V的获取,能够方便地实现亮度L和蓝光危害加权辐亮度LB、以及照度E和蓝光危害加权辐照度EB的转换。标准中所述的RG1和RG2边界处的照度限值Ethr也由此计算而来。宁波快速光谱仪专业设备
光谱分析仪对光源性能评估:显色性评估:衡量光源对物体颜色的还原能力。光谱分析仪可以检测光源的光谱组成,根据其与标准光源的对比,计算出显色指数(Ra)等参数,以评估光源的显色性。例如,在美术馆、博物馆等场所,对光源的显色性要求极高,需要使用显色指数高的光源,才能准确展示艺术品和文物的真实色彩。光强分布和均匀性检测:分析光源在空间各个方向上的光强分布情况,以及照明区域内的光强均匀性。对于一些需要均匀照明的场所,如教室、手术室等,光源的光强均匀性是重要的指标。通过光谱分析仪测量光源的光强分布,可以优化光源的安装位置和角度,提高照明的均匀性。稳定性监测:长时间监测光源的光谱变化,以评估其工作稳定性。例...