能量分布曲线
基于小波变换的声纹振动信号多分辨率分析结果如下图3.8所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。比对正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。下图3.7为正常与异常状态的声纹振动信号能量分布曲线比对。
时频能量分布矩阵(ATF图谱)
获取声纹振动信号的时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态比对。下图3.9为正常状态下声纹振动信号时频能量矩阵。 GZAFV-01型声纹振动监测系统(变压器、电抗器)监测和综合分析。杭州GZAF-1000T系列电抗器振动振动推荐咨询
AFV 信号分析法为 OLTC 的状态监测提供了一种精细的技术手段。OLTC 在运行过程中,内部机械部件的运动撞击和摩擦产生的脉冲冲击力,通过变压器油和静触头传递到变压器箱壁,形成具有独特特征的振动信号。AFV 传感器能够高精度地采集这些信号,并通过先进的信号处理算法进行分析。当 OLTC 出现弹簧弹性下降的故障时,振动信号的低频部分会出现特定的变化,如频率降低、幅值增大。通过对这些信号特征的识别和分析,我们可以准确判断 OLTC 的故障状态,及时采取维修措施,避免因故障导致的电力系统不稳定。国洲电力振动声纹监测设备杭州国洲电力科技有限公司振动声学指纹在线监测技术的经济效益分析。
GZAFV-01T子系统采用AFV和驱动电机电流的信号采集和分析技术,能***地把握OLTC的机械性能状态,可以对OLTC的AFV和驱动电机电流的信号幅值大小进行监测和阈值报警,对AFV和驱动电机电流的信号进行分析。具体功能如下:◆适用于所有类型的OLTC故障诊断。◆利用AFV传感器和电流传感器获取OLTC切换动作过程中产生AFV和驱动电机电流的信号,并通过分析软件进行诊断评价。◆能将复杂的信号转换成易于特征识别的包络曲线。◆独有的信号处理功能,可将X、Y、Z的声纹振动信号生产ATF图,更直观,更便捷分析OLTC故障类型。◆可将任意两次监测的图谱进行相似度分析,并自动计算图谱的重合度。◆具有能量谱分析功能,能自动识别能量谱比较大的高低频能量的频率。
运用 AFV 信号分析法判断 OLTC 的状态,需要关注 OLTC 振动信号的多维度特征。OLTC 切换时产生的振动信号,其频率、幅值、相位等特征都与设备的运行状态密切相关。例如,当 OLTC 出现触头磨损故障时,振动信号的频率分布会发生变化,高频成分会增多;幅值也会随着磨损程度的加深而增大。同时,信号的相位可能会发生偏移,这反映了内部机械结构的相对位置变化。通过对这些多维度特征的综合分析,我们可以更加准确地判断 OLTC 的故障类型和状态,为设备的维修和保养提供更***的信息,确保电力系统的可靠运行。声学指纹振动监测产品有哪些?
利用 AFV 信号分析法对 OLTC 进行状态监测,需要深入理解 OLTC 故障类型与振动特性之间的内在联系。OLTC 内部的各种故障,如触头问题、弹簧弹性下降等,都会对其振动特性产生影响。以弹簧弹性下降为例,弹簧作为 OLTC 内部的重要部件,其弹性下降会导致机械结构的动力学特性发生改变,在切换时产生的脉冲冲击力也会相应变化,从而使 OLTC 的振动信号发生改变。通过 AFV 传感器对这些振动信号的长期监测和分析,我们可以建立起故障类型与振动特征之间的对应关系,实现对 OLTC 故障的早期预警和准确诊断。杭州国洲电力科技有限公司振动声学指纹在线监测技术的客户反馈分析。在线振动监测调试安装
杭州国洲电力科技有限公司振动声学指纹在线监测技术的科研支持背景。杭州GZAF-1000T系列电抗器振动振动推荐咨询
AFV信号分析法是一种基于振动信号监测的OLTC(有载分接开关)状态诊断技术。其**原理是利用AFV(Acoustic Frequency Vibration)传感器采集变压器箱壁上的振动信号,通过分析信号的时域、频域特征,判断OLTC的运行状态。OLTC在切换过程中,内部机构(如触头、弹簧、传动装置)的运动会产生机械冲击和摩擦振动,这些振动信号通过静触头或变压器油传递至箱壁。由于不同故障(如触头磨损、弹簧老化、电弧放电)会导致振动特征的变化,因此AFV信号分析法能够有效识别OLTC的早期故障,为预防性维护提供依据。杭州GZAF-1000T系列电抗器振动振动推荐咨询