GZAFV-01T子系统采用AFV和驱动电机电流的信号采集和分析技术,能***地把握OLTC的机械性能状态,可以对OLTC的AFV和驱动电机电流的信号幅值大小进行监测和阈值报警,对AFV和驱动电机电流的信号进行分析。具体功能如下:◆适用于所有类型的OLTC故障诊断。◆利用AFV传感器和电流传感器获取OLTC切换动作过程中产生AFV和驱动电机电流的信号,并通过分析软件进行诊断评价。◆能将复杂的信号转换成易于特征识别的包络曲线。◆独有的信号处理功能,可将X、Y、Z的声纹振动信号生产ATF图,更直观,更便捷分析OLTC故障类型。◆可将任意两次监测的图谱进行相似度分析,并自动计算图谱的重合度。◆具有能量谱分析功能,能自动识别能量谱比较大的高低频能量的频率。声纹振动监测具体知识介绍。研发振动声学指纹监测标准
AFV 信号分析法为 OLTC 的状态监测提供了一种全新的视角。OLTC 在运行过程中,其内部触头的分 / 合操作会产生一系列复杂的物理现象,这些现象都会反映在 AFV 信号中。触头在分 / 合过程中,由于材料的消耗和机械应力的作用,会逐渐出现凹凸不平和变形,这会导致触头压力和接触电阻发生变化,进而改变 OLTC 的振动特性。通过 AFV 传感器对 OLTC 的振动信号进行持续监测和分析,我们可以实时掌握触头的状态。一旦发现振动信号出现异常变化,就可以判断出 OLTC 可能存在触头故障,及时采取措施进行处理,确保电力系统的安全稳定运行。电抗器振动规格GZAFV-06T型便携式变压器声纹振动 监测与诊断系统传感器。
在 OLTC 的状态监测领域,AFV 信号分析法具有独特的优势。OLTC 切换时,内部机构部件的运动撞击和摩擦产生的脉冲冲击力,通过变压器油和静触头传递到变压器箱壁,形成具有特定频率和幅值特征的振动信号。这些信号如同设备运行状态的 “密码”,通过 AFV 传感器采集并运用专业的信号处理算法进行分析,我们可以解读出 OLTC 的工作模式和状态数据。例如,当 OLTC 出现电弧故障时,其振动信号会呈现出高频、高幅值的特征,与正常运行状态下的信号有明显区别。利用 AFV 信号分析法,我们能够快速准确地判断出 OLTC 的故障类型,为设备的维护和管理提供科学依据。
变压器运行时,电流通过绕组时产生的电动力引起绕组振动,硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动。由于绕组导体所受电动力正比于负载电流的平方,绕组的声纹振动信号的基频为100Hz。由于变压器中磁感应强度正比于加载电压的平方,铁芯的声纹振动信号的基频也为100Hz。另外,考虑到铁芯振动的非线性特性,声纹振动信号还会包含频率为100Hz整数倍的高次谐波。当变压器的绕组变形或铁芯故障后,声纹振动信号频谱分布将发生改变,产生谐波分量。因此,信号分量可以作为区别绕组故障与铁芯故障的重要依据,采用声纹振动监测法可实现绕组及铁芯在线运行状态下的健康态势评价与故障类型诊断。杭州国洲电力科技有限公司振动声学指纹在线监测技术的行业合作案例。
在运用 AFV 信号分析法判断 OLTC 状态时,要注重对 OLTC 切换过程中信号变化的研究。OLTC 切换瞬间,内部主要机构部件的运动撞击和摩擦产生强烈的脉冲冲击力,这些冲击力迅速通过变压器油和静触头传递到变压器箱壁,引发箱壁的振动。AFV 传感器在这个过程中捕捉到的振动信号,包含了 OLTC 切换时间、触头状态等重要信息。例如,当 OLTC 的切换时间变长时,振动信号的持续时间也会相应增加,信号的起始和结束特征也会发生变化。通过对这些信号变化的细致分析,我们可以准确判断 OLTC 的工作状态是否正常,及时发现潜在的故障隐患。杭州国洲电力科技有限公司振动声学指纹在线监测技术的实际应用价值。怎样振动以客为尊
杭州国洲电力科技有限公司振动声学指纹在线监测技术的未来发展趋势。研发振动声学指纹监测标准
AFV信号分析法AFV信号分析法是采用AFV传感器监测AFV信号,获得OLTC的状态数据和工作模式,从而对其状态进行判断的方法。OLTC在切换时,其内部主要机构部件的运动撞击和摩擦都会产生脉冲冲击力,该信号会通过静触头或变压器油传到变压器箱壁上。传到变压器外壳上的振动是内部多种激励现象的响应,包含着大量的设备机械状态数据。OLTC的故障类型与其振动特性的变化存在着紧密关系,通过对AFV信号的监测和诊断,即可判断出OLTC切换时间的变化、触头接触不良、触头磨损、弹簧弹性下降和电弧等故障,从而可以诊断出OLTC处于正常状态或是故障状态。触头在分/合的切换过程中,由于伴随着机械、化学、头材料消耗,造成触头凹凸不平和变形,从而引起触头压力接触电阻和开矩参数的变化,使得OLTC的振动特征也随之改变。研发振动声学指纹监测标准