液晶偏振光显微镜是一种将液晶可变减速器、电子成像及数码成像技术结合起来的成像系统,能够观测到具有双折性特征的细胞结构,如纺锤体和透明带。Polscope成像系统无需对细胞进行固定和染色,因此能够评估卵母细胞的质量与纺锤体、透明带等的相关性。在纺锤体卵冷冻研究中,Polscope成像系统可用于实时监测冷冻过程中纺锤体的形态变化,评估冷冻保护剂的效果和冷冻速率对纺锤体的影响。此外,解冻后也可利用Polscope成像系统评估纺锤体的恢复情况和稳定性,从而筛选出高质量的卵母细胞进行后续操作。纺锤体在细胞分裂中的精确调控是生物体维持遗传稳定性的关键。美国Hamilton Thorne纺锤体兼容大部分显微镜
Oosight影像分析系统采用液晶偏光成像技术,无需对卵母细胞进行染色,即可实时、清晰、高对比度地进行纺锤体结构和透明带成像,对ICSI、核移植操作、卵母细胞质量评价等有很好的辅助作用。
主要应用ICSI:在单精胞浆注射过程中定位初级卵母细胞,避免卵的破裂损伤,增强胚胎的发育潜能。卵评估:利用定量的分析数据对卵进行分级,改善对胚胎的选择。体外成熟评估:在未成熟卵催化(IVM)过程判断成熟期,判断依据采用的是准确的识别纺锤体,而非不准确的极体。质量控制:利用定量的分析数据对卵进行分级,改善对胚胎的选择。
核移植:显著提高核移植的成功率。由于在核摘除的过程可以清楚的看到核质,使得核移植的成功率增加了80%,并减少了线粒体DNA的摘除。卵冷冻研究:对冷冻的初级卵母细胞进行解冻前和解冻后的定量分析,从而判断卵的发育力,改善妊娠率。纺锤体研究:检测胚胎中纺锤体的发育过程,确定正常和非正常分裂率(只可用于搭配有培养箱的显微镜)。可以对染色体非正常的或非整倍体的胚胎成像,从而选择***的前体做PGD诊断。透明带研究:测量卵母细胞的透明带;准确测量纺锤体和透明带中分子排列方向的差别变化,判断纺锤体和透明带是否处于正常状态 武汉双折射性纺锤体加热台纺锤体在细胞分裂中的功能受到细胞内外环境的共同影响。
无需染色纺锤体观察技术能够实时监测冷冻过程中纺锤体的形态变化,从而准确评估冷冻保存的效果。通过对比冷冻前后纺锤体的形态和稳定性,研究者可以优化冷冻保护剂的配方和浓度,以及改进冷冻程序,减少冷冻损伤,提高解冻后卵母细胞的存活率和发育潜能。解冻后的卵母细胞在无需染色的情况下,可以直接通过Polscope系统进行纺锤体观察。这一技术能够迅速评估解冻后卵母细胞的质量,包括纺锤体的形态、位置、稳定性等关键指标,为后续的受精和胚胎发育提供重要参考。
胞质膜在动物细胞的细胞分裂结束时,母细胞在一个被称为“胞质分裂”的过程中分裂成两个子细胞和分区隔离的染色体。有丝分裂纺锤体控制胞质膜上的“胞质分裂”事件,但连接这两个宏观结构的机制一直不清楚。MarkPetronczki及其同事提供了一个结构和功能分析结果,他们发现**纺锤体蛋白(纺锤体中间区域和中间体中的一个蛋白复合物)是有丝分裂纺锤体与胞质膜间所缺失的联系环节,这个联系环节确保“胞质分裂”过程的***结果。本文作者还发现,**纺锤体蛋白的MgcRac***亚单元中的一个区域为一个“系绳”,它连接到胞质膜中的磷酸肌醇脂质上。[4]纺锤体的形成和功能与细胞的周期调控密切相关。
在有丝分裂过程中,纺锤体的形成和功能是高度协调的。从前期到中期,纺锤体逐渐成熟,染色体被精确排列在细胞的中间区域。到了后期和末期,纺锤体开始分解,将染色体拉向细胞的两极,并完成胞质分裂。这一过程中,纺锤体的微管通过缩短和伸长来协调染色体的移动和定位,确保遗传信息的准确传递。虽然无丝分裂过程中不形成明显的纺锤体结构,但纺锤体的相关成分(如微管和动力蛋白)仍在细胞分裂中发挥作用。例如,在质体分裂中,纺锤体成分同样起到了精确定位和运动染色体的作用。在减数分裂过程中,纺锤体的形成和功能更加复杂。以人卵母细胞为例,其纺锤体在减数分裂过程中会经历一段较长时间的“多极纺锤体”阶段,而后才形成双极状纺锤体。这一过程需要多种关键蛋白(如HAUS6、KIF11和KIF18A)的参与和调控。纺锤体的正确组装和双极化对于保证卵母细胞的正常发育和受精至关重要。纺锤体在细胞分裂中扮演关键角色,确保遗传物质均等分配。美国偏光成像纺锤体Oosight Basic
纺锤体的功能异常与某些药物的副作用有关,如化疗药物可能干扰纺锤体的形成和功能。美国Hamilton Thorne纺锤体兼容大部分显微镜
在生殖医学领域,卵母细胞的冷冻保存技术一直是研究的热点之一,旨在提高女性生育能力的保存与利用。然而,传统纺锤体观察方法往往需要对卵母细胞进行固定和染色,这不仅破坏了细胞的活性,还限制了对其发育潜能的进一步评估。传统纺锤体观察方法,如免疫荧光染色技术,虽然能够清晰地展示纺锤体的形态,但其缺点在于需要对细胞进行固定和染色处理,这一过程不可避免地会对细胞造成损伤,影响后续的实验结果和临床应用。而Polscope偏振光显微成像系统则通过利用纺锤体微管结构的双折射性,实现了对无需染色纺锤体的直接观察。这一技术创新不仅保留了细胞的活性与完整性,还提高了观察的实时性和动态性,为卵母细胞冷冻研究提供了更为准确和可靠的评估手段。美国Hamilton Thorne纺锤体兼容大部分显微镜
选择合适的冷冻保护剂是减少冷冻损伤的关键。然而,不同浓度的冷冻保护剂对MI期卵母细胞纺锤体的影响各异...
【详情】微管蛋白的突变和异常磷酸化是导致纺锤体功能障碍的主要原因之一。微管蛋白是构成微管的基本单元,其稳定性...
【详情】微管重组技术是体外构建纺锤体模型的基础。通过在体外重组微管蛋白,可以形成类似于细胞内纺锤体的微管结构...
【详情】什么是纺锤体?它有多重要?纺锤体主要由微管蛋白组成,微管蛋白是一种含有α和β亚单位的异二聚体。纺锤体...
【详情】液晶偏振光显微镜是一种将液晶可变减速器、电子成像及数码成像技术结合起来的成像系统,能够观测到具有双折...
【详情】通过抑制细胞周期重新进入,可以减少神经元的细胞凋亡,保护神经元的存活。例如,使用细胞周期抑制剂(如C...
【详情】纺锤体成像技术在细胞生物学领域具有很广的应用价值。以下是几个主要的应用方向:揭示纺锤体的精细结构和动...
【详情】纺锤体功能分解在细胞分裂中,其主要作用有两个部分。其一为排列与分裂染色体。纺锤体的完整性决定了染色体...
【详情】在有丝分裂中,纺锤体负责将姐妹染色单体分离并牵引至细胞两极,形成两个遗传物质完全相同的子细胞。而在减...
【详情】在纺锤体卵冷冻过程中,利用纺锤体实时成像技术可以实时监测纺锤体的变化。通过观察冷冻过程中纺锤体的形态...
【详情】在生殖医学与辅助生殖技术的快速发展中,卵母细胞的冷冻保存技术显得尤为重要。然而,卵母细胞,尤其是其内...
【详情】冷冻与解冻过程中涉及多个环节,包括温度控制、时间控制、冷冻保护剂的添加与去除等。这些环节中的任何一步...
【详情】