高硬度与强度高度氧化锆陶瓷的硬度极高,接近莫氏硬度9.5,与天然钻石相当,耐磨性能较好。它拥有很高的抗弯强度和抗压强度,可以与钢铁相媲美,甚至超过某些金属材料。高耐磨性与耐腐蚀性氧化锆陶瓷具有出色的耐磨性,其摩擦系数低,磨损率很低。它还具有良好的耐腐蚀性,能够抵抗酸、碱和其他化学介质的侵蚀,适合在恶劣环境中使用。优异的绝缘性能氧化锆陶瓷在常温下是一种很好的绝缘材料,具有良好的绝缘性能和电介质性能。良好的生物相容性氧化锆陶瓷对人体组织有良好的生物相容性,不会引起过敏反应或其他不良生物反应。相变增韧与微裂纹增韧氧化锆陶瓷具有相变增韧和微裂纹增韧机制,这使其在所有陶瓷中具有较高的断裂韧性精密成型工艺,工业陶瓷件尺寸误差极小,适配各类设备需求。新能源陶瓷技术参数
半导体陶瓷是一种具有半导体特性的陶瓷材料,其电导率约在 10−6∼105 S/m 范围内,并且这一电导率会随着外界条件(如温度、光照、电场、气氛等)的变化而发生明显变化。这种敏感特性使得半导体陶瓷在多个领域具有广泛的应用。以下是半导体陶瓷主要敏感特性的详细介绍:温度敏感特性负温度系数(NTC)热敏电阻:一些过渡金属氧化物半导体陶瓷,如锰、铁、钴、镍的氧化物,其电阻随温度升高而呈指数减小。这种特性使得它们适用于温度测量、温度控制和温度补偿等领域。正温度系数(PTC)热敏电阻:掺杂的钛酸钡半导体陶瓷的电阻随温度升高而增大,并在居里点有剧变。这种特性使得它们可用于过热保护、彩色电视机消磁等场合。临界温度热敏电阻(CTR):如氧化钒及其掺杂半导体陶瓷,具有负温系数,并在某一特定温度下电阻产生急剧变化。这种特性可用于检测特定温度的转变点,如制作红外探测器和温度报警器。氧化铝陶瓷一体化无锡北瓷工业陶瓷件,抗热冲击能力强,冷热交替不易开裂。
粉体制备:氧化锆超细粉末的制备方法包括氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。成型方法:包括干压成型、等静压成型、注浆成型、热压铸成型、流延成型、注射成型、塑性挤压成型、胶态凝固成型等。其中,使用范围广的是注塑与干压成型。脱脂排胶:除干压成型外的其他成型工艺会在锆粉里加入塑化剂,成型后需去除,否则会对烧结出的产品造成品质影响。烧结方法:包括无压烧结、热压烧结和反应热压烧结、热等静压烧结(HIP)、微波烧结、超高压烧结、放电等离子体烧结(SPS)、原位加压成型烧结等。常以无压烧结为主。
与锰钢的耐磨性比较氧化锆陶瓷工作表面的耐磨性是锰钢的100倍以上。这意味着在相同的磨损条件下,氧化锆陶瓷的耐磨性能远超锰钢,能够更长时间地保持其形状和尺寸稳定性。与高铬铸铁的耐磨性比较氧化锆陶瓷的耐磨性是高铬铸铁的20倍。高铬铸铁是一种耐磨性能较好的金属材料,但相比之下,氧化锆陶瓷的耐磨性能更加出色。与耐磨橡胶的耐磨性比较氧化锆陶瓷的耐磨性是耐磨橡胶的几倍或几十倍。耐磨橡胶虽然也具有一定的耐磨性能,但在与氧化锆陶瓷的比较中,其耐磨性能显然较低。与氧化铝陶瓷的耐磨性比较氧化锆陶瓷的耐磨性是氧化铝陶瓷的15倍,且摩擦系数为氧化铝陶瓷的1/2以下。这表明在相同条件下,氧化锆陶瓷具有更好的耐磨性和更低的摩擦系数,从而减少了磨损和摩擦产生的热量。无锡北瓷工业陶瓷件,抗酸碱腐蚀,化工生产可靠之选。
耐腐蚀性:氧化锆陶瓷:具有良好的耐腐蚀性,能够抵抗酸、碱和其他化学介质的侵蚀。玻璃:对化学介质的抵抗能力相对较弱,尤其在强酸或强碱环境下容易发生腐蚀。稳定性:氧化锆陶瓷:化学稳定性高,不易发生化学反应。玻璃:在某些条件下可能发生化学反应,如与碱性物质反应导致表面腐蚀。绝缘性:氧化锆陶瓷:常温下为绝缘体,高温下具有导电性。玻璃:通常为绝缘体,但在特定条件下可能表现出一定的导电性。电磁屏蔽性:氧化锆陶瓷:对电磁信号没有屏蔽作用,适合用于需要信号传输的场合。玻璃:对电磁信号有一定的屏蔽作用,但相比金属材料来说较弱。无锡北瓷的光伏陶瓷,为太阳能发电系统带来更优的吸热性能。碳化硅陶瓷答疑解惑
工业陶瓷件抗压强度大,承受重压,不变形不损坏。新能源陶瓷技术参数
结构陶瓷领域:氧化锆陶瓷具有高硬度、强度高度、高韧性、高耐磨性和优异的抗热震性能,使其成为制造结构陶瓷部件的理想材料。它被广泛应用于制造磨球、分散和研磨介质、喷嘴、球阀球座、氧化锆模具、微型风扇轴心等部件。在纺织领域,氧化锆陶瓷可用于制造喷丝板、针板等。功能陶瓷领域:氧化锆陶瓷具有优异的耐高温性能,可作为感应加热管、耐火材料、发热元件等。它还具有良好的电性能参数,如高电阻率、低介电常数和低介电损耗,因此可用于制造氧传感器、固体氧化物燃料电池(SOFC)等。氧化锆陶瓷还可用于制造电容器、压敏电阻、热敏电阻等电子元件。新能源陶瓷技术参数
按化学成分分类:氧化物陶瓷:如氧化铝陶瓷、氧化锆陶瓷等。氧化铝陶瓷具有高硬度、高耐磨性和良好的电绝缘性,常用于制造陶瓷刀具、绝缘子等;氧化锆陶瓷则具有高韧性、高抗热震性和良好的生物相容性,可用于制造人工关节、牙科修复材料等。非氧化物陶瓷:如碳化硅陶瓷、氮化硅陶瓷等。碳化硅陶瓷具有高硬度、高耐磨性和良好的导热性,可用于制造高温炉具、热交换器等;氮化硅陶瓷具有强度高度、高韧性、耐高温和良好的自润滑性,常用于制造发动机部件、轴承等。按用途分类:结构陶瓷:主要用于承受机械载荷,如陶瓷刀具、陶瓷轴承、陶瓷阀门等。它们具有强度高度、高硬度和良好的耐磨性,能够替代传统的金属材料,在机械加工、航空航天等领域发...